Skip to main content

Aeromagnetic and Marine Measurements

  • Chapter
  • First Online:
Geomagnetic Observations and Models

Part of the book series: IAGA Special Sopron Book Series ((IAGA,volume 5))

Abstract

Modern magnetic measurements have been acquired since the 1940s over land and the 1950s over oceans. Such measurements are collected using magnetometer sensors rigidly fixed to the airframe or towed in a bird for airborne or in a fish in marine surveys using a cable long enough to avoid the ship/airplane magnetic effect. Positioning problems have been considerably reduced by the Global Positioning System (GPS). Considerable progress has been made in geomagnetic instrumentation increasing the accuracy from ∼10 nT or better in the 1960s to ∼0.1 nT or more nowadays. Scalar magnetometers, less sensitive to orientation problems than the fluxgate vector instruments, are the most commnonly used for total-field intensity measurement. Optical pumping alkali vapor magnetometers with high sampling rate and high sensitivity are generally used aboard airframes whereas proton precession magnetometers (including Overhauser) are favored at sea. Scalar magnetic anomalies are calculated by subtraction of global core field models like the International Geomagnetic Reference Field (IGRF) after subtraction of an external magnetic field estimate using magnetic observatories or temporary magnetic stations. The external field correction using an auxiliary station is often not possible in marine measurements. However comprehensive models such as CM4 can be used to provide adequate core and external magnetic fields, particularly for almost all early magnetic measurements which were not corrected for the external field. In the case of airborne measurements such global models help to define a reference level for global mapping of the anomaly field. The current marine dataset adequately covers most of the Northern Hemisphere oceanic areas while major gaps are observed in the southern Indian and Pacific oceans. Airborne measurements cover all the world, except oceanic areas and large part of Antarctica. Data are however often not available when owned by private companies. The data released are mainly owned by governmental agencies. The derived airborne/marine magnetic anomaly maps combined with long-wavelength satellite maps help scientists to better understand the structure and the evolution of the lithosphere at local, regional and global scales. Marine magnetic observations are also made at depth, near the seafloor, in order to access shorter wavelengths of the magnetic field for high resolution studies. Airborne High Resolution Anomaly Maps (HRAM) are also nowadays the new trends pushing towards the generalisation of the Unmanned Aerial Vehicles (UAV) or Autonomous Underwater Vehicles (AUV) or Remotely Operated Vehicles (ROV) magnetic surveys.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.ngdc.noaa.gov/mgg/gdas/

References

  • Achache J, Cohen Y, Unal G (1991) The french program of circumterrestrial magnetic surveys using startospheric balloons. EOS Trans Am Geophys Union 72:97–101

    Article  Google Scholar 

  • Acuña MH, Scearce CS, Seek JB, Scheifele J (1978) The magsat vector magnetometer-a precision fluxgate magnetometer for the measurement of the geomagnetic field, Technical report, NASA/GSFC TM 79656

    Google Scholar 

  • Acuña MH, Connerney JEP, Ness NF, Lin RP, Mitchell D, Carlson CW, McFadden J, Anderson KA, Reme H, Mazelle C, Vignes D, Wasilewski P, Cloutier P (1999) Global distribution of crustal magnetization discovered by the mars global surveyor MAG/ER experiment. Science 284(5415):790–793

    Article  Google Scholar 

  • Airo ML (2002) Aeromagnetic and aeroradiometric response to hydrothermal alteration. Surv Geophys 23:273–302

    Article  Google Scholar 

  • Allan T (1969) A review of marine geomagnetism. Earth Sci Rev 5:217–254

    Article  Google Scholar 

  • Allek K (2005) Traitement et interpretation des donnees aeromagnetiques acquises au-dessus des regions de tindouf et de l’eglab (SO de l’Algerie): impact sur l’exploration du diamant, Master’s thesis, Universite des Sciences et de la Technologie Houari Boumediene, USTHB

    Google Scholar 

  • Allek K, Hamoudi M (2008) Regional-scale aeromagnetic survey of the south-west of algeria: a tool for area selection for diamond exploration. J Afr Earth Sci 50:67–78

    Article  Google Scholar 

  • Anderson B, Longacre M, Quist P (1999) Comparison of a new marine magnetometer system to high-resolution aeromagnetic data a case study from offshore Oman. In: Proceedings of the SEG International Exposition and 70th Annual Meeting, Houston

    Google Scholar 

  • Anderson DE, Pita AC (2005) Geophysical surveying with georanger uav. Am Inst Aeronaut Astronaut 50:67–78

    Google Scholar 

  • Balsley JRJ (1946) The airborne magnetometer, Preliminary report 3, 8p., U.S. Geological Survey, Washington, DC

    Google Scholar 

  • Barton CE (1997) International geomagnetic reference field: The seventh generation. J Geomagnetic Geoelectric 49:123–148

    Google Scholar 

  • Bell WE, Bloom AL (1957) Optical detection of magnetic resonance in alkali metal vapor. Phys Rev 107(6):1559–1565

    Article  Google Scholar 

  • Bhattacharyya BK (1969) Bicubic spline interpolation as a method for treatment of potential field data. Geophysics 34:402–423

    Article  Google Scholar 

  • Bhattacharyya BK (1971) An automatic method of compilation and mapping of high-resolution aeromagnetic data. Geophysics 36(4):695–716

    Article  Google Scholar 

  • Binder AB (1998) Lunar prospector: overview. Science 281(5382):1475–1476

    Article  Google Scholar 

  • Blakely RJ (1988) Curie temperature isothermal analysis and tectonic implications of aeromagnetic data from Nevada. J Geophys Res 93(B10):11817–11832

    Article  Google Scholar 

  • Blakely R, Cox A, Iufer E (1973) Vector magnetic data for detecting short polarity intervals in marine magnetic profiles. J Geophys Res 78:6977–6983

    Article  Google Scholar 

  • Bouligand C, Dyment J, Gallet Y, Hulot G (2006) Geomagnetic field variations between chrons 33r and 19r (83–41 ma) from sea-surface magnetic anomaly profiles. Earth Planet Sci Lett 250(3–4):541–560. doi:10.1016/j.epsl.2006.06.051

    Article  Google Scholar 

  • Bournas N (2001) Interpretation des donnees aerogeophysiques acquises au-dessus du hoggar oriental (algerie), PhD thesis, Universite des Sciences et de la Technologie Houari Boumediene, USTHB

    Google Scholar 

  • Bournas N, Galdeano A, Hamoudi M, Baker H (2003) Interpretation of the aeromagnetic map of eastern hoggar (algeria) using euler deconvolution, analytic signal and local wavenumber methods. J Afr Earth Sci 37:191–205

    Article  Google Scholar 

  • Boyce J, Reinhardt E, Raban A, Pozza M (2004), Marine Magnetic Survey of a Submerged Roman Harbour, Caesarea Maritima, Israel. Int J Naut Arch 33(1):122–136. doi:10.1111/j.1095-9270.2004.010.x

    Article  Google Scholar 

  • Bozzo E, Colla A, Caneva G, Meloni A, Caramelli A, Romeo G, Damaske D, Moeller D (1994) Technical procedures for aeromagnetic surveys in antarctica during the italian expeditions (1988–1992). Ann Geophys XXXVII(5):1283–1294

    Google Scholar 

  • Braginski SI, Roberts PH (1995) Equations governing convection in earth’s core and the geodynamo. Geophys Astrophys Fluid Dyn 79(1):1–97

    Article  Google Scholar 

  • Briggs IC (1974) Machine contouring using minimum curvature. Geophysics 39:39–48

    Article  Google Scholar 

  • Bullard E, Mason R (1961) The magnetic field astern of a ship. Deep Sea Res 8:20–27

    Article  Google Scholar 

  • Cady JW (1990) Alaska as a frontier for aeromagnetic interpretation. In: Geologic applications of modern aeromagnetic surveys. U.S. Geological Survey Bulletin 1924:75–84

    Google Scholar 

  • Cande S, Kent D (1992a) A new geomagnetic polarity time scale for the late Cretaceous and Cenozoic. J Geophys Res 97:13917–13951

    Article  Google Scholar 

  • Cande S, Kent D (1992b) Ultrahigh resolution marine magnetic anomaly profiles: a record of continuous paleointensity variations. J Geophys Res 97:15075–15083

    Article  Google Scholar 

  • Chapman S, Bartels J (1940) Geomagnetism, vol. II. Clarendon Press, Oxford, p 633

    Google Scholar 

  • Chiappini M, Meloni A, Boschi E, Faggioni O, Beverini N, Carmiciani C, Marson I (2000) Shaded relief magnetic anomaly map of italy and surrounding marine areas. Ann Geophys 43(5):983–989

    Google Scholar 

  • Cohen TJ, Lintz PR (1974) Long term periodicities in the sunspot cycle. Nature 250:398–399

    Article  Google Scholar 

  • Cohen Y, Menvielle M, Le Mouël J (1986) Magnetic measurements aboard a stratospheric balloon. Phys Earth Planetary Inter 44:348–357

    Article  Google Scholar 

  • Cordell LE, Hildenbrand TG, Kleinkopf MD (1990) Notes of discussion group on the midcontinent. In: Geologic applications of modern aeromagnetic surveys. U.S. Geological Survey Bulletin 1924:90–91

    Google Scholar 

  • Courtillot V, Le Mouël J, Mayaud P (1977) Maximum entropy spectral analysis of the geomagnetic activity index aa over 107-year interval. J Geophys Res 82(19):2641–2649

    Article  Google Scholar 

  • Dehmelt HG (1957) Slow spin relaxation of optically polarized sodium atoms. Phys Rev 105(5):1487–1489

    Article  Google Scholar 

  • Dobrin MD, Savit CH (1988) Introduction to geophysical prospecting. Mc Graw Hill, New York, NY, p 867

    Google Scholar 

  • Doll WE, Gamey TJ, Beard LP, Bell DT (2006) Airborne vertical magnetic gradient for near-surface applications. The Leading Edges 25(1):50–53

    Article  Google Scholar 

  • Doyle HA (1987) Geophysics in Australia. Earth Sci Hist 6(2):178–204

    Google Scholar 

  • Dyment J, Tamaki K, Horen H, Fouquet Y, Nakase K, Yamamoto M, Ravilly M, Kitazawa M (2005) A positive magnetic anomaly at Rainbow hydrothermal site in ultramafic environment. Eos Trans AGU 86(52, Fall Meet Suppl):21–08

    Google Scholar 

  • Engels M, Barckhausen U, Gee J (2008) A new towed marine vector magnetometer: methods and results from a Central Pacific cruise. Geophys J Int 172:115–129. doi:10.1111/j.1365-246X.2007.03601.x

    Article  Google Scholar 

  • Eve AS (1932) A magnetic method for estimating the height of some buried magnetic bodies. Trans Geophys Prospect Am Inst Mining Metallurgical Eng 101:200–215

    Google Scholar 

  • Eve AS, Keys DA (1933) Applied geophysics in the search for minerals. Cambridge University Press, Cambridge

    Google Scholar 

  • Ferris JK, Vaughan APM, King EC (2002) A window on west Antarctic crustal boundaries: the junction between the antarctic peninsula, the filchner block and weddell sea oceanic lithosphere. Tectonophysics 347:13–23

    Article  Google Scholar 

  • Finlay C, Maus S, Beggan C, Hamoudi M, Lowes FJ, Olsen N, Thèbault E (2010) Evaluation of candidate geomagnetic field models for igrf-11. Earth Planets Space submitted 1–18

    Google Scholar 

  • Foster MR, Jines WR, van der Weg K (1970) Statistical estimation of syetematic errors at intersections of lines of aeromagnetic survey data. J Geophys Res 75:1507–1511

    Article  Google Scholar 

  • Frost BR, Shive PN (1986) Magnetic mineralogy of the lower continental crust. J Geophys Res 91(B6):6513–6521

    Article  Google Scholar 

  • Gee J, Schneider D, Kent D (1996) Marine magnetic anomalies as recorders of geomagnetic intensity variations. Earth Planet Sci Lett 144:327–335

    Article  Google Scholar 

  • Gee J, Tauxe L, Hildebrand J, Staudigel H, Lonsdale P (1988) Nonuniform Magnetization of Jasper Seamount. J Geophys Res 93(B10):12159–12175

    Article  Google Scholar 

  • Gee J, Cande S (2002) A surface-towed vector magnetometer. Geophys Res Lett. doi:10.1029/2002GL015245

    Google Scholar 

  • Gee J, Cande S, Hildebrand J, Donnelly K, Parker R (2000) Geomagnetic intensity variations over the past 780 kyr obtained from near-seaoor magnetic anomalies. Nature 408:827–832

    Article  Google Scholar 

  • Germain-Jones D (1957) Post-war developments in geophysical instrumentation for oil prospecting. J Sci Inst 34:1–8

    Article  Google Scholar 

  • Gopal BJ, Sarma VN, Rambabu HV (2008) Real time compensation for aircraft induced noise during high resolution airborne magnetic surveys. J Ind Geophys Union 8(3):185–189

    Google Scholar 

  • Grant F (1970) Statistical models for interpreting aeromagnetic data. Geoexploration 35(2):293–302

    Google Scholar 

  • Grant F (1972) Review of data processing and interpretation methods in gravity and magnetics, 1964–71. Geophysics 37(2):647–661

    Article  Google Scholar 

  • Grant F (1985a) Aeromagnetics, geology, and ore environments; i, magnetite in igneous, sedimentary and metamorphic rocks—an overview. Geoexploration 23:303–333

    Article  Google Scholar 

  • Grant F (1985b) Aeromagnetics, geology and ore environments; ii, magnetite and ore environments. Geoexploration 23:335–362

    Article  Google Scholar 

  • Grauch VJS, Millegan P (1998) Mapping intrabasinal faults from high-resolution aeromagnetic data. The Leading Edges 17(1):53–56

    Article  Google Scholar 

  • Guspi F (1987) Frequency-domain reduction of potential field measurements to a horizontal plane. Geoexploration 24:87–98

    Article  Google Scholar 

  • Hamoudi M, Cohen Y, Achache J (1998) Can the thermal thickness of the continental lithosphere be estimated from magsat data. Tectonophysics 284:19–29

    Article  Google Scholar 

  • Hamoudi M, Thèbault E, Lesur V, Mandea M (2007) Geoforschungszentrum anomaly magnetic map (gamma): a candidate model for the world digital magnetic anomaly map. Geochem Geophys Geosyst 8(6):1–13

    Article  Google Scholar 

  • Hanna WF (1990) Some historical notes on early magnetic surveying in the U.S. geological survey. In: Geologic applications of modern aeromagnetic surveys. U.S. Geological Survey Bulletin 1924:63–73

    Google Scholar 

  • Hansen RO (1993) Interpretive gridding by anistropic kriging. Geophysics 58(10):1491–1497

    Article  Google Scholar 

  • Hardwick CD (1984a) Important design considerations for inboard airborne magnetic gradiometers. Geophysics 49(11):2004–2018

    Article  Google Scholar 

  • Hardwick CD (1984b) Non-oriented cesium sensors for airborne magnetometry and gradiometry. Geophysics 49(11):2024–2031

    Article  Google Scholar 

  • Hawkins WB (1955) Orientation and alignment of sodium atoms by means of polarized resonance radiation. Phys Rev 98(2):478–486

    Article  Google Scholar 

  • Heezen B, Ewing M, Miller E (1953) Trans-Atlantic profile of total magnetic intensity and topography, Dakar to Barbados. Deep Sea Res 1:25–33

    Article  Google Scholar 

  • Heiland CA (1929) Geophysical methods of prospecting: Principles and recent successes. Q Colo School Mines XXIV(1):47–77

    Google Scholar 

  • Heiland CA (1935) Geophysical mapping from the air: its possibilities and advantages. Eng Min J 136:609–610

    Google Scholar 

  • Heiland CA (1940) Geophysical exploration. Prentice-Hall, New York, NY

    Google Scholar 

  • Heiland CA (1953) Method of and apparatus for aeromagnetic prospecting U.S. Patent 2659859

    Google Scholar 

  • Heirtzler J (1964) Magnetic measurements near the deep ocean floor. Deep Sea Res 11:891–898

    Google Scholar 

  • Hemant K, Thèbault E, Mandea M, Ravat D, Maus S (2007) Magnetic anomaly map of the world: merging satellite, airborne, marine and ground-based magnetic data sets. Earth Planetary Sci Lett 260(1–2):56–71

    Article  Google Scholar 

  • Hildenbrand TG, Raines GL (1990) Need for aeromagnetic data and a national airborne geophysics program. In: Geologic applications of modern aeromagnetic surveys. U.S. Geological Survey Bulletin 1924:1–5

    Google Scholar 

  • Hill M (1959) A ship-borne nuclear-spin magnetometer. Deep Sea Res 5:309–311

    Google Scholar 

  • Hofman-Wellenhof B, Legat K, Wiener M (2003) Navigation: principles of positioning and guidance. Springer, New York, NY

    Google Scholar 

  • Honsho C, Dyment J, Tamaki K, Ravilly M, Horen H, Gente P (2009) Magnetic structure of a slow spreading ridge segment: insights from near-bottom magnetic measurements on board a submersible. J Geophys Res. 114 B05101:1–25 doi:10.1029/2008JB005915

    Google Scholar 

  • Hood L, Zakharian A, Halekas J, Mitchell D, Lin R, na MA, Binder A (2001) Initial mapping and interpretation of lunar crustal magnetic anomalies using lunar prospector magnetometer data. J Geophys Res 106(E11):27825–27839

    Article  Google Scholar 

  • Hood P (1990) Aeromagnetic survey program of Canada, mineral applications, and vertical gradiometry, in Geologic Applications of Modern Aeromagnetic Surveys

    Google Scholar 

  • Hood P (2007) History of aeromagnetic surveying in Canada. The Leading Edges 26(11):1384–1392

    Article  Google Scholar 

  • Hood P, Sawatzky JP, Kornik LJ, McGrath PH (1976) Aeromagnetic gradiometer survey, white lake, Open File 339, Geological Survey of Canada

    Google Scholar 

  • Horsfall KR (1997) Airborne magnetic and gamma-ray acquisition. J Aust Geol Geophys 17(2):23–30

    Google Scholar 

  • Hrvoic D (2007) SeaSPY technical application guide, marine magnetics corporation education

    Google Scholar 

  • Hussenoeder SA, Tivey MA, Schouten H (1995) Direct inversion of potential fields from an uneven track with application to the Mid-Atlantic Ridge. Geophys Res Lett 22:3131–3134. doi:10.1029/95GL03326

    Article  Google Scholar 

  • Isezaki N (1986) A new shipboard three-component magnetometer. Geophysics 51(10):1992–1998

    Article  Google Scholar 

  • Jensen H (1965) Instrument details and applications of a new airborne magnetometer. Geophysics XXX(5):875–882

    Google Scholar 

  • Jones E (1999) The earth’s magnetic field at sea, in marine geophysics. Wiley, Chichester, pp 162–197

    Google Scholar 

  • Kastler A (1954) Optical methods of atomic orientation and of magnetic resonance. J Opt Soc Am 47(6):460–465

    Article  Google Scholar 

  • Keating P (1993) The fractal dimension of gravity data sets and its implication for gridding. Geophys Prospect 41:983–994

    Article  Google Scholar 

  • Keating P (1995) A simple technique to identify magnetic anomalies due to kimberlite pipes. Explor Mining Geol 4:121–125

    Google Scholar 

  • Kittel C (2005) Introduction to the solid state physics. Wiley, San Francisco, CA

    Google Scholar 

  • Klitgord K, Mudie J, Huestis S, Parker R (1975) An analysis of near-bottom magnetic anomalies: sea-floor spreading and the magnetized layer. Geophys. J R Astron Soc 43:387–424

    Google Scholar 

  • König M (2006) Processing of shipborne magnetometer data and revision of the timing and geometry of the Mesozoic break-up of Gondwana. Rep Polar Res 525:137 pp.

    Google Scholar 

  • Korenaga J (1995) Comprehensive analysis of marine magnetic vector anomalies. J Geophys Res 100(B1):365–378

    Article  Google Scholar 

  • Korhonen JV (2005) Airborne magnetic method: Special features and review on applications, In: Airo ML (ed) Aerogeophysics in Finland 19722004: methods, system characteristics and applications, vol 39. Geological Survey of Finland, special paper Espoo, Finland edn. pp 77–102

    Google Scholar 

  • Korhonen JV, Koistinen T, Elo S, Saavuori H, Kaariainen J, Nevanlinna H, Aaro S, Haller LA, Skilbrei JR, Solheim D, Chepik A, Kulinich A, Zhdanova L, Vaher R, All T, Sildvee H (1999) Preliminary magnetic and gravity anomaly maps of the fennoscandian shield 1:10, 000, 000. Geological Survey of Finland 27 Special paper, pp 173–179

    Google Scholar 

  • Korhonen J, Fairhead J, Hamoudi M, Hemant K, Lesur V, Mandea M, Maus S, Purucker M, Ravat D, Sazonova T, Thèbault E (2007) Magnetic anomaly map of the World, Scale 1:50,000,000, 1st edn. Commission for the Geological Map of the World, UNESCO edn.

    Google Scholar 

  • Langel R (1982) The magnetic earth as seen from magsat, initial results. Geophys Res Lett 9(4):239–242

    Article  Google Scholar 

  • Langel R, Ousley G, Berbert J, Murphy J, Settle M (1982) The magsat mission. Geophys Res Lett 9(4):243–245

    Article  Google Scholar 

  • Langel R, Hinze W (1998) The magnetic field of the Earth’s lithosphere. Cambridge University Press, Cambridge

    Google Scholar 

  • Laughton A, Hill M, Allan T (1960) Geophysical investigations of a Seamount 150 miles North of Madeira. Deep Sea Res 7:117–141

    Article  Google Scholar 

  • Le Mouël JL (1969) Les elements du champ magnetique terrestre, PhD thesis, Faculte des Sciences de l’Universite de Paris

    Google Scholar 

  • Lee S, Kim S (2004) Vector magnetic analysis within the southern Ayu Trough, equatorial western Pacific. Geophys J Int 156:213–221

    Article  Google Scholar 

  • Leger JM, Bertrand F, Jager T, Prado ML, Fratter I, Lalaurie JC (2009) Swarm absolute scalar and vector magnetometer based on helium 4 optical pumping. Procedia Chem 1:634–637

    Article  Google Scholar 

  • Leliak P (1961) Identification and evaluation of magnetic field sources of magnetic airborne detector equiped aircraft. Ins Radio Eng Trans Aerospace Navigational Electron 8:95–105

    Google Scholar 

  • Lenz J (1990) A review of magnetic sensors. Proc IEEE 78(6):973–989

    Article  Google Scholar 

  • Lesur V, Clark T, Turbitt C, Flower S (2004) A technique for estimating the absolute vector geomagnetic field from a marine vessel. J Geophys Eng 1:109–115

    Article  Google Scholar 

  • Lesur V, Wardinski I, Rother M, Mandea M (2008) GRIMM: the GFZ reference internal magnetic model based on vector satellite and observatory data. Geophys J Int 173(2):382–394. doi:10.1111/j.1365-246X.2008.03724.x

    Article  Google Scholar 

  • Lesur V, Wardinski I, Asari S, Minchev B, Mandea M (2009) Modelling the Earth’s core magnetic field under flow constraints. Earth Planet Space 62(6):503–516

    Article  Google Scholar 

  • Logachev AA (1947) The development and applications of airborne magnetometers in the u.s.s.r. Geophysics (trans: Russian Hawkes HE) 11:135–147

    Google Scholar 

  • Luis JF (1996) Le leve aeromagnetic des acores, PhD thesis, Institut de Physique du Globe de Paris, IPGP

    Google Scholar 

  • Luis JF, Miranda JM (2008) Reevaluation of magnetic chrons in the north atlantic between 35n and 47n: Implications for the formation of the azores triple junction and associated plateau. J Geophys Res 113(B10105):1–12

    Google Scholar 

  • Luis JF, Miranda JM, Galdeano A, Patriat P, Rossignol JC, Mendes-Victor LA (1994) The acores triple junction evolution since 10 ma from aeromagnetic survey of the mid-atlantic ridge. Earth Planetary Sci Lett 125:439–459

    Article  Google Scholar 

  • Lum CW (2009) Coordinated searching and target identification using teams of autonomous agents, PhD thesis, University of Washington

    Google Scholar 

  • Lum CW, Rysdyk RT, Pongwunwattana A (2005) Autonomous airborne geomagnetic surveying and target identification, in AIAA Infotech@Aerospace Conference

    Google Scholar 

  • Macdonald K, Kastens K, Spiess F, Miller S (1979) Deep tow studies of the Tamayo Transform Fault. Marine Geophys Res 4:37–70

    Article  Google Scholar 

  • Macdonald K, Miller S, Luyendyk B, Atwater T, Shure L (1983) Investigation of a Vine-Matthews magnetic lineation from a submersible: the source and character of marine magnetic anomalies. J Geophys Res 88:3403–3418

    Article  Google Scholar 

  • Macmillan S, Maus S (2005) International Geomagnetic Reference Field-the tenth generation. Earth Planets Space 57:1135–1140

    Google Scholar 

  • Macmillan S, Maus S, Bondar T, Chambodut A, Golovkov V, Holme R, Langlais B, Lesur V, Lowes F, Luhr H, Mai W, Mandea M, Olsen N, Rother M, Sabaka TJ, Thomson A, Wardinski I (2003) The ninth-generation international geomagnetic reference field. Phys Earth Planetary Inter 140:253–254

    Article  Google Scholar 

  • Malahoff A, Feden R, Fleming H (1982) Magnetic Anomalies and Tectonic Fabric of Marginal Basins North of New Zealand. J Geophys Res 87(B5):4109–4125

    Article  Google Scholar 

  • Mason R (1958) A magnetic survey off the west coast of the United States between latitudes 32° and 36°N, longitudes 121° and 128°W. Geophys J 1:320–329

    Google Scholar 

  • Mason R, Raff A (1961) A magnetic survey off the west coast of North America, 32°N to 42°N. Geol Soc Am Bull 72:1259–1265

    Article  Google Scholar 

  • Maus S, McLean S, Dater D, Luhr H, Rother M, Mai W, Choi S (2005) Ngdc/gfz candidate models for the 10th generation internationale geomagnetic reference field. Earth Planets Space 57:1151–1156

    Google Scholar 

  • Maus S, Sazonova T, Hemant K, Fairhead JD, Ravat D (2007) National geophysical data center candidate for the world digital magnetic anomaly map. Geochem Geophys Geosyst 8(6):10

    Article  Google Scholar 

  • Maus S, Macmillan S, McLean S, Hamilton B, Thomson A, Nair M (2009) The us/uk world magnetic model for 2010–2015, Technical Report NES-DIS/NGDC, NOAA

    Google Scholar 

  • McCafferty AE, Van Gosen BS (2009) Airborne gamma-ray and magnetic anomaly signatures of serpentinite in relation to soil geochemistry. Appl Geochem 24:1524–1537

    Article  Google Scholar 

  • Merkouriev S, DeMets C (2006) Constraints on Indian plate motion since 20 ma from dense Russian magnetic data: Implications for Indian plate dynamics. Geochem Geophys Geosyst Q02002. doi:10.1029/2005GC001079

    Google Scholar 

  • Merkouriev S, DeMets C (2008) A high-resolution model for EurasiaNorth America plate kinematics since 20 ma. Geophys J Int. doi:10.1111/j.1365-246X.2008.03761.x

    Google Scholar 

  • Merrill R, McElhinny M (1983) The earth’s magnetic field: its history, origin, and planetary perspective. Academic, London

    Google Scholar 

  • Miles PJ, Partner RT, Keeler KR, McConnel TJ (2008) Unmanned airborne vehicle geophysical surveying US 2008/0125920 A1

    Google Scholar 

  • Millegan P (2005) Broader spectrum, fewew folks-gavity and magnetics. The Leading Edges 24(S1):36–41

    Article  Google Scholar 

  • Milligan PR, Franklin R (2004) Magnetic anomaly map of Australia, 4th edn. Geoscience Australia, Canberra, Scale 1:5,000,000

    Google Scholar 

  • Milligan PR, White A, Heinson G, Brodie R (1993) Micropulsation and induction array study near ballarat victoria. Explor Geophys 24(2):117–122

    Article  Google Scholar 

  • Minty BRS (1991) Simple micro-levelling for aeromagnetic data. Explor Geophys 22:591–592

    Article  Google Scholar 

  • Mittal PK (1984) Algorithm for error adjustment of potential field data along a survey network. Geophysics 49(4):467–469

    Article  Google Scholar 

  • Muffly G (1946) The airborne magnetometer. Geophysics 11:321–334

    Article  Google Scholar 

  • Nabighian M, Grauch V, Hansen R, LaFehr T, Li Y, Peirce J, Phillips J, Ruder M (2005) The historical development of the magnetic method in exploration. Geophysics 70(6):33–61. doi:10.1190/1.2133784

    Google Scholar 

  • Nazarova K, Tsetkov YA, Heirtzler J, Sabaka TJ (2005) Balloon geomagnetic survey at stratospheric altitudes, In: Reigber C, Luhr H, Schwintzer P, Wickert J (eds) Earth magnetic field. Springer, New York, NY, pp 273–278

    Google Scholar 

  • Ness NF (1971) Interaction of the solar wind with the moon. Phys Earth Planetary Inter 4:197–198

    Article  Google Scholar 

  • Nielsen OV, Petersen JR, Primdahl F, Brauer P, Hernando B, Fernandez A, Merayo JMG, Ripka P (1995) Development, construction and analysis of the ‘oersted’ fluxgate magnetometer. Meas Sci Technol 6:1099–1115

    Article  Google Scholar 

  • Nielsen OV, Brauer P, Primdahl F, Risbo T, Jorgensen JL, Boe C, Deyerler M, Bauereisen S (1997) A high-precision triaxial fluxgate sensor for spece applications: layout and choice of materials. Sens Actuators A59:168–176

    Article  Google Scholar 

  • O’Connell MD, Smith RS, Vallee MA (2005) Gridding aeromagnetic data using longitudinal and transverse gradients with the minimum curvature operator. The Leading Edges 24:142–145

    Article  Google Scholar 

  • Olsen N (2002) A model of the geomagnetic field and its secular variation for epoch 2000 estimated from Oersted data. Geophys J Int 149:454–462

    Article  Google Scholar 

  • Olsen N, Lühr H, Sabaka TJ, Mandea M, Rother M, Toffner-Calusen L, Choi S (2006) CHAOS—a model of the Earth’s magnetic field derived from CHAMP, Oersted, and SAC-C magnetic satellite data. Geophys J Int 166:67–75

    Article  Google Scholar 

  • Olsen N, Mandea M, Sabaka TJ, Toffner-Clausen L (2009) Chaos-2 —a geomagnetic field model derived from one decade of continuous satellite data. Geophys J Int 179:1477–1487

    Article  Google Scholar 

  • Overhauser AW (1953) Polarization of nuclei in metals. Phys Rev 92:411–415

    Article  Google Scholar 

  • Packard M, Varian R (1954) Proton gyromagnetic ratio. Phys Rev 93:941–947

    Google Scholar 

  • Pang X, Lintz C (2009) Study on aircraft magnetic compensation based on fir model, In: International Symposium on Intelligent Information Systems and Applications IISA’09 Quindao, China

    Google Scholar 

  • Pariso J, Rommevaux C, Sempere JC (1996) Three-Dimensional Inversion of Marine Magnetic Anomalies: Implications for Crustal Accretion along the Mid-Atlantic Ridge (28°–31°30'N). Mar Geophys Res 18:85–101

    Article  Google Scholar 

  • Parker RL, Huestis S (1974) The Inversion of Magnetic Anomalies in the Presence of Topography. J Geophys Res 79(11):1587–1593

    Article  Google Scholar 

  • Parkinson BW, Enge PE (1996) Differential gps, In: Zarchan P, Parkinson B, Spilker J Jr, Axelrad P, Enge P (eds) Chapter 1, American Institute of Aeronautics and Astronautics., pp 3–49.

  • Parsons LW, Wiatr ZM (1962) Rubidium vapour magnetometer. J Sci Instrum 39:292–300

    Article  Google Scholar 

  • Paterson NR, Reeves CV (1985) Applications of gravity and magnetic surveys: The state-of-the-art in 1985. Geophysics 50(12):2558–2594

    Article  Google Scholar 

  • Pouliquen G, Gallet Y, Dyment J, Patriat P, Tamura C (2001a) A geomagnetic record over the last 3.5 million years from deep-tow magnetic anomaly profiles across the Central Indian Ridge. J Geophys Res 106:10941–10960

    Article  Google Scholar 

  • Pouliquen G, Gallet Y, Dyment J, Patriat P, Tamura C (2001b) Correction to A geomagnetic record over the last 3.5 million years from deep-tow magnetic anomaly profiles across the Central Indian Ridge. J Geophys Res 106:30549

    Article  Google Scholar 

  • Pulz E, Jackel KH, Linthe HJ (1999) A new optically pumped tandem magnetometer: principles and experiences. Meas Sci Technol 10:1025–1031

    Article  Google Scholar 

  • Purucker M, Whaler K (2007) Crustal magnetism. In: Schubert G (ed) Treatise of geophysics, vol 5. Chapter 6, Elsevier, Amsterdam:195–237

    Chapter  Google Scholar 

  • Quesnel Y, Catalán M, Ishihara T (2009) A new global marine magnetic anomaly data set. J Geophys Res B04106. doi:10.1029/2008JB006144

    Google Scholar 

  • Raff A, Mason R (1961) A magnetic survey off the west coast of North America, 40°N to 52.5°N. Geol Soc Am Bull 72:1259–1265

    Article  Google Scholar 

  • Ravat D, Hildebrand T, Roest W (2003) New way of processing near-surface magnetic data: the utility of the comprehensive model of the magnetic field. Leading Edge 22:784–785

    Article  Google Scholar 

  • Ravilly M, Horen H, Perrin M, Dyment J, Gente P, Guillou H (2001) NRM intensity of altered oceanic basalts: a record of geomagnetic paleointensity variations? Geophys J Int 145:401–422

    Article  Google Scholar 

  • Reeves CV (1993) Limitations imposed by geomagnetic variations on high quality aeromagnetic surveys. Explor Geophys 24:115–116

    Article  Google Scholar 

  • Reeves CV (2005) Aeromagnetic surveys: principles, practice and interpretation. e-book published by Geosoft

    Google Scholar 

  • Reford MS (1980) Magnetic method. Geophysics 45(11):1640–1658

    Article  Google Scholar 

  • Reford MS (2006) Gradient enhancement of the total magnetic field. Leading Edge 25(1):59–66

    Article  Google Scholar 

  • Reford MS, Sumner JS (1964) Aeromagnetics. Geophysics XXIX (4):482–516

    Article  Google Scholar 

  • Reid AB (1980) Aeromagnetic survey design. Geophysics 45(5):973–976

    Article  Google Scholar 

  • Reigber C, Luhr H, Schwintzer P (2002) Champ mission status. Adv Space Res 30(2):129–134

    Article  Google Scholar 

  • Reigber C, Schwintzer P, Luhr H (1999) The champ geopotential mission. Bolletino di Geofisica Terica e Applicata 40:285–289

    Google Scholar 

  • Reynolds RJ, Schlinger CM (1990) Notes of discussion Group on Rock Magnetics. In: Geologic applications of modern aeromagnetic surveys. U.S. Geological Survey Bulletin 1924:99–101

    Google Scholar 

  • Reynolds RL, Rosenbaum JG, Hudson MR, Fishman NS (1990) Rock magnetism, the distribution of magnetic minerals in the earth’s crust , and aeromagnetic anomalies. In: Geologic applications of modern aeromagnetic surveys

    Google Scholar 

  • Rice JAJ (1993) Automatic compensator for an airborne magnetic anomaly detector U.S. Patent 5182514

    Google Scholar 

  • Ridsdill-Smith TA, Dentith MC (1999) The wavelet transform in aeromagnetic processing. Geophysics 64:1003–1013

    Article  Google Scholar 

  • Rigoti A, Padilha AL, Chamalaun FH, Trived NB (2000) Effects of the equatorial electrojet on aeromagnetic data acquisition. Geophysics 65(2):553–558

    Article  Google Scholar 

  • Ripka P (1996) Noise and stability of magnetic sensors. J Magnet Magnetic Mater 157–158:424–427

    Article  Google Scholar 

  • Sabaka TJ, Olsen N, Langel R (2002) A comprehensive model of the quiet-time, near-earth magnetic field: Phase 3. Geophys J Int 151(1):32–68

    Article  Google Scholar 

  • Sabaka TJ, Olsen N, Purucker ME (2004) Extending comprehensive models of the Earth’s magnetic field with Oersted and CHAMP data. Geophys J Int 159:521–547

    Article  Google Scholar 

  • Sapunov V, Denisov A, Denisova O, Saveliev D (2001) Proton and Overhauser magnetometers metrology. Control Geophys Geodesy 31(1):119

    Google Scholar 

  • Schouten H, Denham C (1979) Modelling the oceanic magnetic source layer, In: Talwani M, Harrison C, Hayes D (eds) Deep drilling results in the Atlantic Ocean: ocean crust, American Geophysics Union, series 2 Washington, DC:151–159

    Google Scholar 

  • Seama N, Nogi Y, Isezaki N (1993) A new method for precise determination of the position and strike of magnetic boundaries using vector data of the geomagnetic anomaly field. Geophys J Int 113:155–164

    Article  Google Scholar 

  • Sexton JL, Hinze WJ, R.B. von Frese, Braile LW (1982) Long-wavelength aeromagnetic anomaly map of the conterminous united states. Geology 10:364–369

    Article  Google Scholar 

  • Shah A, Cormier M, Ryan W, Jin W, Sinton J, Bergmanis E, Carlut J, Bradley A, Yoerger D (2003) Episodic dike swarms inferred from near-bottom magnetic anomaly maps at the southern East Pacific Rise. J Geophys Res 2097. doi:10.1029/2001JB000564

    Google Scholar 

  • Sibuet J, Srivastava S, Manatschal G (2007) Exhumed mantle-forming transitional crust in the Newfoundland-Iberia rift and associated magnetic anomalies. J Geophys Res. 112 B06105 doi:10.1029/2005JB003856

    Google Scholar 

  • Sichler B, Hékinian R (2002) Three-dimensional inversion of marine magnetic anomalies on the equatorial Atlantic Ridge (St. Paul Fracture Zone): Delayed magnetization in a magmatically starved spreading center? J Geophys Res. 107(B12):2347 doi:10.1029/2001JB000401

    Google Scholar 

  • Slack H, Lynch V, Langan L (1967) The geomagnetic gradiometer. Geophysics 32:877–892

    Article  Google Scholar 

  • Smith K (1997) Cesium optically pumped magnetometers : Basic theory of operation, Technical Report M-TR91, GEOMETRICS

    Google Scholar 

  • Stolz R, Zasarenko V, Schulz M, Chwalla A, Fritzsch L, Meyer HG, Kostlin EO (2006) Magnetic full-tensor squid gradiometer system for geophysical applications. The Leading Edges 25(2):178–180

    Article  Google Scholar 

  • Sundberg K, Lundberg H (1932) Magnetism. Trans Am Inst Mining Metallurgical Eng

    Google Scholar 

  • Supper R, De Ritis R, Motschka K, Chiappini M (2004) Aeromagnetic anomaly images of volcano and southern lipari islands (aeolian archipelago, italy). Ann Geophys 47(6):1803–1810

    Google Scholar 

  • Talwani M, Dorman J, Worzel J, Bryan G (1966) Navigation at sea by satellite. J Geophys Res 71:5891–5902

    Google Scholar 

  • Tarlowski C, Simonis F, Whitaker A, Milligan R (1992) The magnetic anomaly map of australia. Explor Geophys 23(2):339–342

    Article  Google Scholar 

  • Tarlowski C, Mc Ewin AJ, Reeves CV, Barton CE (1996) Dewarping the composite aeromagnetic anomaly map of australia using control traverses and base stations. Geophysics 61(3):696–705

    Article  Google Scholar 

  • Telford WM, Geldart LP, Sheriff RE (1990) Applied geophysics, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Tivey M, Dyment J (2010) The magnetic signature of hydrothermal systems in slow spreading environments, In: Rona P, Devey C, Dyment J, Murton B (eds) Diversity of hydrothermal systems on slow spreading ocean ridges, Am Geophys Union Monogr, Series 188 Washington, ISBN 978-0-87390-470-8

    Google Scholar 

  • Tivey M, Johnson H (2002) Crustal magnetization reveals subsurface structure of Juan de Fuca Ridge hydrothermal vent fields. Geology 30:979–982

    Article  Google Scholar 

  • Tivey M, Rona P, Schouten H (1993) Reduced crustal magnetization beneath the active sulfide mound, TAG Hydrothermal Field, Mid-Atlantic Ridge 26°N. Earth Planet Sci Lett 115:101–116

    Article  Google Scholar 

  • Tivey M, Johnson H, Fleutelot C, Hussenoeder S, Lawrence R, Waters C, Wooding B (1998a) Direct measurement of magnetic reversal polarity boundaries in a cross-section of oceanic crust. Geophys Res Lett 25:3631–3634 (1998a)

    Article  Google Scholar 

  • Tivey M, Johnson H, Bradley A, Yoerger D (1998b) Thickness measurements of submarine lava ows determined from near-bottom magnetic field mapping by autonomous underwater vehicle. Geophys Res Lett 25:805–808

    Article  Google Scholar 

  • Tohyama F, Nishio Y, Yamagishi H, Yamagami T (2007) Geomagnetic field observation using fluxgate magnetometer system onboard balloons in antarctica. Proc Schl Eng Tokai Univ., Ser. E 32:19–25

    Google Scholar 

  • Tsetkov YA, Belkin VA, Kanonidi KD, Kharitonov AL (1995) Physico-geological interpretation of the anomalous geomagnetic field measured in the stratosphere. Phys Solid Earth (English Translation) 31(4):329–332

    Google Scholar 

  • Urquhart W (2003) Airborne magnetic surveys: Past, present and future, Canadian Exploration Geophysics Society (KEGS).

    Google Scholar 

  • Vacquier V, Raff A, Warren R (1961) Horizontal displacements in the oor of the northeastern Pacific Ocean. Geol Soc Am Bull 72:1251–1258

    Article  Google Scholar 

  • Vacquier VV (1946) Apparatus for responding to magnetic field U.S. Patent 2406870

    Google Scholar 

  • Van Den Bossche P, Coles S, Murrell D, Madotyeni Z (2004) Maritime wreck surveys: Search for the wreck of the Dutch East India Company slave ship, MEERMIN, wrecked in 1766 in Struisbaai, South Africa, Technical Report 0182, Council for Geoscience and Iziko Museums, Project 0463

    Google Scholar 

  • Verhoef J, Roest W, Macnab R, Arkani-Hamed J (1996) Members of the Project Team, Magnetic anomalies of the Arctic and North Atlantic Oceans and adjacent land areas, Technical Report GSC Open File 3125, parts a and b (CD-ROM and project Report), Geological Survey of Canada, Dartmouth, Nova Scotia, 225pp

    Google Scholar 

  • Vine F, Matthews D (1963) Magnetic anomalies over oceanic ridges. Nature 4897:947–949

    Article  Google Scholar 

  • Waters G, Phillips G (1956) A new method of measuring the Earth’s magnetic field. Geophys Prosp 4:1–9

    Article  Google Scholar 

  • Whitham K, Loomer EI (1957) Irregular magnetic activity in northern Canada with special reference to aeromagnetic survey problems. Geophysics 22:646–659

    Article  Google Scholar 

  • Whitham K, Niblett ER (1961) The diurnal problem in aeromagnetic surveying in Canada. Geophysics XXVI(2):211–228

    Article  Google Scholar 

  • Whitmarsh R, Miles P (1995) Models of the development of the West Iberia rifted continental margin at 40°30'N deduced from surface and deep-tow magnetic anomalies. J Geophys Res 100(B3):3789–3806

    Article  Google Scholar 

  • Williams PM (1993) Aeromagnetic compensation using neural networks. Neural Comput Appl 1:207–214

    Article  Google Scholar 

  • Wyckoff RD (1948) The gulf airborne magnetometer. Geophysics 13:182–208

    Article  Google Scholar 

  • Yamamoto M, Seama N, Isezaki N (2004) Genetic Algorithm inversion of geomagnetic vector data using a 2.5-dimensional magnetic structure model. Earth Planets Space 56:217–227

    Google Scholar 

  • Yamamoto M, Seama N, Isezaki N (2005) Geomagnetic paleointensity over 1.2 Ma from deep-tow vector magnetic data across the East Pacific Rise. Earth Planets Space 57:465–470

    Google Scholar 

  • Zhana YX (1994) Aeromagnetic anomalies and perspective oil traps in china. Geophysics 59(10):1492–1499

    Article  Google Scholar 

  • Zimmerman JE, Campbell WH (1975) Tests of cryogenic squid for geomagnetic field measurements. Geophysics 40(2):269–264

    Article  Google Scholar 

  • Zonenshain LP, Verhoef J, Macnab R, Meyers H (1991) Magnetic imprints of continental accretion in the ussr and adjacent areas. EOS Trans Am Geophys Union 72(29):305–310

    Google Scholar 

Download references

Acknowledgements

The authors collectively would like to thank the reviewer, Kathryn Whaler, and acknowledge her work that greatly improved the quality of manuscript. MH would like to warmly acknowledge the contributions of K. Allek, N. Bournas, J. Luis in compiling and processing aeromagnetic data and P. Mouge for his help. T. Ishihara kindly accepted to review a preliminary version of the part devoted to marine magnetics. YQ also acknowledges him and M. Catalãn for precious references that helped to build and write the marine magnetics sections. Novatem, and Geometrics companies kindly provided illustrations used in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Hamoudi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hamoudi, M., Quesnel, Y., Dyment, J., Lesur, V. (2011). Aeromagnetic and Marine Measurements. In: Mandea, M., Korte, M. (eds) Geomagnetic Observations and Models. IAGA Special Sopron Book Series, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9858-0_4

Download citation

Publish with us

Policies and ethics