Skip to main content

The Effects of Anthropogenic Stressors on Wetland Loss and Habitat Quality Deterioration in the Upper Guadiana River Basin: A Long-Term Assessment (1970–2000)

  • Chapter
  • First Online:
Ecology of Threatened Semi-Arid Wetlands

Part of the book series: Wetlands: Ecology, Conservation and Management ((WECM,volume 2))

  • 839 Accesses

Abstract

During the last four decades, around 1,500 km2 of dry croplands have been transformed, and are now irrigated in the Upper Guadiana river basin, causing hydrologic overexploitation and wetland desiccation. However, there are no estimations on how anthropogenic stressors have been changing the wetland landscape in the recent past. This chapter focuses on the understanding of how the changes on land-use land-cover (LULC), economic activities and population have driven wetland losses and habitat degradation in the basin from the 1970s. Our results show that 40.5% (2,041.6 ha) of the 5,321 ha of wetlands existing in the early 1970s had disappeared in the last 30 years (1970–2000). Most wetland losses occurred through the period 1978–1990, which registered a rate 127 ha of wetland lost per year. Most affected were floodplain wetlands (47% of total loss) and rain-fed temporary ponds (24%). During the entire period 1978–1999, the loss of wetlands could be significantly related to the loss of natural vegetation, as well as to the reduction of agricultural employment. Habitat quality of wetlands showed a clear pattern of nutrient over-enrichment, as well as a trend towards salinization, the later related to the greater disappearance of most freshwater wetlands (0–2,500 µS cm−1). LULC, economic activities and demography explained around 50% of wetland loss and habitat quality deterioration. Until 1990, the pressure of population growth, combined with the agricultural sector, explained the disappearance of most wetland area. From then on, habitat quality has been more impacted in areas where industry and building sectors had more weight in the socioeconomic development (also densely populated watersheds).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allan JD, Erickson DL, Fay J (1997) The influence of catchment land use on stream integrity across multiple spatial scales. Freshw Biol 37:149–161

    Article  Google Scholar 

  • Álvarez-Cobelas M, Cirujano S (1996) Las Tablas de Daimiel: ecología acuática y sociedad. Ministerio de Medio ambiente, Madrid, Spain

    Google Scholar 

  • Álvarez-Cobelas M, Cirujano S, Sánchez-Carrillo S (2001) Hydrological and botanical man-made changes in the Spanish wetland of Las Tablas de Daimiel. Biol Conserv 97:89–98

    Article  Google Scholar 

  • Angeler DG, Viedma O, Sánchez-Carrillo S, Alvarez-Cobelas M (2008) Conservation issues of temporary wetland Branchiopoda (Anostraca, Notostraca: Crustacea) in a semiarid agricultural landscape: what spatial scales are relevant? Biol Conserv 141:1224–1234

    Article  Google Scholar 

  • Armengol J, Estrada M, Guiset A, Margalef R, Planas D, Toja J, Vallespinós F (1975) Observaciones limnológicas en las lagunas de la Mancha. Boletín Estación Central de Ecología 4:11–17

    Google Scholar 

  • Bedford BL, Preston EM (1988) Developing the scientific basis for assessing cumulative effects of wetland loss and degradation on landscape functions: status, perspectives and prospects. Environ Manage 12:751–771

    Article  Google Scholar 

  • Berka C, Schreier H, Hall K (2001) Linking water quality with agricultural intensification in a rural watershed. Water Air Soil Pollut 127:389–401

    Article  CAS  Google Scholar 

  • Bernier JC, Morton RA, Barras JA (2006) Constraining rates and trends of historical wetland loss, Mississippi River delta plain, South-Central Louisiana. In: Xu YJ, Singh VP (eds) Coastal environment and water quality. Water Resources Publications, pp 371–382. http://coastal.er.usgs.gov/gc-subsidence/historical-wetland-loss.pdf

    Google Scholar 

  • Bhaduri B, Harbor J, Engel B, Grove M (2000) Assessing watershed-scale, long-term hydrologic impacts of land-use change using a GIS-NPS model. Environ Manage 26:643–658

    Article  PubMed  Google Scholar 

  • Brinson MM (1993) A hydrogeomorphic classification of wetlands. Wetlands Research Program Technical Report WRP-DE-4. US Army Corps of Engineers, US. http://el.erdc.usace.army.mil/wetlands/pdfs/wrpde4.pdf. Accessed 16 Dec 2009

    Google Scholar 

  • Brinson MM, Malvárez AI (2002) Temperate freshwater wetlands: types, status, and threats. Environ Conserv 29:115–133

    Article  Google Scholar 

  • Calder IR (1998) Water-resource and land-use issues. SWIM Paper 3. International Water Management Institute, Colombo, Sri Lanka

    Google Scholar 

  • Cano-Soler D, Cendejas JL, Ruiz C, Martín D (2000) El mercado de trabajo y su medición en España. Estadística Española 42:189–204. http://www.ine.es/revistas/estaespa/146_3.pdf

    Google Scholar 

  • Cirujano S (1980a) Estudio florístico, ecológico y sintaxonómico de la vegetación higrófila de la submeseta sur. Ph.D. thesis. Universidad Complutense Madrid

    Google Scholar 

  • Cirujano S (1980b) Las lagunas manchegas y su vegetación I. Anales Jar Bot Madrid 37:155–192

    Google Scholar 

  • Cirujano S (1980c) Las lagunas manchegas y su vegetación II. Anales Jar Bot Madrid 38:187–232

    Google Scholar 

  • Cirujano S (1990) Flora y vegetación de las lagunas y humedales de la provincia de Albacete. Instituto de Estudios Albacetenses de la Excma. Diputación de Albacete. CSIC. Confederación Española de Centros de Estudios Locales. Serie I. Ensayos Históricos y científicos 52, Albacete

    Google Scholar 

  • Cirujano S, Medina L (2002) Plantas acuáticas de las lagunas y humedales de Castilla-La Mancha. Real Jardín Botánico CSIC y Junta de Comunidades de Castilla- La Mancha, Madrid

    Google Scholar 

  • Cirujano S, Velayos M, Carrasco MA (1990) Notas sobre higrófitos peninsulares III. Anales Jar Bot Madrid 47:519–520

    Google Scholar 

  • Cirujano S, Velayos M, Carrasco MA (1992) Aspectos dinámicos de la flora acuática y cambios fisico-químicos del agua en dos lagunas continentales españolas: laguna de la Albardiosa (Toledo) y las Tablas de Daimiel (Ciudad Real). Historia Nat 91:249–256

    Google Scholar 

  • Cirujano S, Casado C, Bernués M, Camargo JA (1996) Ecological study of the National Park of Las Tablas de Daimiel (Ciudad Real, Spain): changes in the physico-chemical characteristics of the waters and the vegetation between 1974–1989. Biol Conserv 75:211–215

    Article  Google Scholar 

  • Dale VH, Brown S, Haeuber RA, Hobbs NT, Huntly N, Naiman NJ, Riebsame WE, Turner MG, Valone TJ (2000) Ecological principles and guidelines for managing the use of land1. Ecol Appl 10(3):639–670

    Google Scholar 

  • DeFries R, Eshleman NK (2004) Land-use change and hydrologic processes: a major focus for the future. Hydrol Process 18(11):2183–2186

    Article  Google Scholar 

  • EEA European Environmental Agency (2005) CORINE Land Cover 1990. CORINE Land Cover 2000. http://dataservice.eea.eu.int

    Google Scholar 

  • ESRI (2006) ArcGIS Version 9.2 and the Spatial Analyst Extension, Environmental Systems Research Institute, Redlands, California

    Google Scholar 

  • Florin M, Montes C (1999) Functional analysis and restoration of Mediterranean lagunas in the Mancha Húmeda Biosphere Reserve (Central Spain). Aquat Conser Mar Freshw Ecosyst 9:97–109

    Article  Google Scholar 

  • Gergel SE, Turner MG, Miller JR, Melack JM, Stanley EH (2002) Landscape indicators of human impacts to riverine systems. Aquat Sci 64:18–128

    Article  Google Scholar 

  • Hemond H, Benoit J (1988) Cumulative impacts on water quality functions of wetlands. Environ Manage 12:639–653

    Article  Google Scholar 

  • Heras G, Prieto E, Guerrero T, Oñate JM, Ontalba A, Cortés M, Lorenzo A, Marcilla JJ, Palomo JL, Tudanca M, Carrión J (1971) Recursos y aprovechamientos hidráulicos. Consejo Económico Sindical Interprovincial de La Mancha, Ciudad Real

    Google Scholar 

  • Hildrew AG, Giller PS (1994) Patchiness, species interactions and disturbance in the stream benthos. In: Giller PS, Hildrew AG, Raffaelli DG (eds) Aquatic ecology: scale, patterns and process. Blackwell, Cambridge, MA

    Google Scholar 

  • Hollis GE (1992) The causes of wetland loss and degradation in the Mediterranean. In: Finlayson CM, Hollis GE, Davis TD (eds) Managing Mediterranean wetlands and their birds. IWRB Special Publication No. 20, Slimbridge

    Google Scholar 

  • Houlahan JE, Findlay CS (2004) Estimating the ‘critical’ distance at which adjacent land-use degrades wetland water and sediment quality. Landscape Ecol 19:677–690

    Article  Google Scholar 

  • Houlahan JE, Keddy PA, Makkay K, Findlay CS (2006) The effects of adjacent land use on wetland species richness and community composition. Wetlands 26:79–96

    Article  Google Scholar 

  • INE (2008) Anuario estadístico de España. Historical web-supported database (1858-nowadays). http://www.ine.es/prodyser/pubweb/anuarios_mnu.htm. Accessed 16 Dec 2009

    Google Scholar 

  • Jones KB, Neale AC, Nash MS, Van Remortel RD, Wickham JD, Riitters KH, O’Neill RV (2001) Predicting nutrient and sediment loadings to streams from landscape metrics: a multiple watershed study from the United States Mid-Atlantic Region. Landscape Ecol 16(4):301–312

    Article  Google Scholar 

  • Lambin EF, Turner BL, Geist HJ, Agbola SB, Angelsen A, Bruce JW, Coomes OT, Dirzo R, Fischer G, Folke C, George PS, Homewood K, Imbernon J, Leemans R, Li X, Moran EF, Mortimore M, Ramakrishnan PS, Richards JF, Skånes H (2001) The causes of land-use and land-cover change: moving beyond the myths. Global Environ Chang 11:261–269

    Article  Google Scholar 

  • Liu H, Zhang S, Li Z, Lu X, Yang Q (2004) Impacts on wetlands of large-scale land-use changes by agricultural development: the small Sanjiang Plain, China. Ambio 33:306–310

    PubMed  Google Scholar 

  • Llamas MR (1988) Conflicts between wetland conservation and groundwater exploitation: two case histories in Spain. Environ Geol Water Sci 11:241–51

    Article  Google Scholar 

  • Molinillo M, Lasanta T, García-Ruiz JM (1997) Managing mountainous degraded landscapes after farmland abandonment in the Central Spanish Pyrenees. Environ Manage 21:587–598

    Article  PubMed  Google Scholar 

  • MOPU (1990) Estudio de las zonas húmedas en la España peninsular, inventario y tipificación, relación con el régimen hídrico general y medidas de protección. Technical Report. Dirección General de Obras Hidráulicas, MOPU, Madrid

    Google Scholar 

  • Moss B (2008) Water pollution by agriculture. Philos Trans R Soc B 363:659–666

    Article  CAS  Google Scholar 

  • Mulligan M, Burke SM (1999) Modelling the future of groundwater resources in central Spain. Environ Manage Health 10:41–51

    Google Scholar 

  • Niehoff D, Fritsch U, Bronstert A (2002) Land-use impacts on storm-runoff generation: scenarios of land-use change and simulation of hydrological response in a meso-scale catchment in SW-Germany. J Hydrol 267:80–93

    Article  Google Scholar 

  • Riebsame WE, Meyer WE, Turner BL (1994) Modeling land use and cover as part of global environmental change. Clim Change 28:45–64

    Article  Google Scholar 

  • Tang Z, Engel BA, Pijanowski BC, Lim KJ (2005) Forecasting land use change and its environmental impact at a watershed scale. J Environ Manage 76:35–45

    Article  PubMed  CAS  Google Scholar 

  • Ter Braak CJF (1988) Partial canonical correspondence analysis. In: Bock HH (ed) Classification and related methods of data analysis. North-Holland, Amsterdam

    Google Scholar 

  • Turner K (1991) Economics and wetland management. Ambio 20:59–63

    Google Scholar 

  • Tuteja NK, Beale G, Dawes W, Vaze J, Murphy B, Barnett P, Rancic A, Evans R, Geeves G, Rassam DW, Miller M (2003) Predicting the effects of landuse change on water and salt balance-a case study of a catchment affected by dryland salinity in NSW, Australia. J Hydrol 283:67–90

    Article  CAS  Google Scholar 

  • Uuemaa E, Roosaare J, Mander U (2007) Landscape metrics as indicators of river water quality at catchment scale. Nord Hydrol 38:125–138

    Article  CAS  Google Scholar 

  • Velayos M, Cirujano S, Marquina A (1984) Aspectos de la vegetación acuática de la provincia de Guadalajara. Anales Jard Bot Madrid 41:175–184

    Google Scholar 

  • Velayos M, Carrasco MA, Cirujano S (1989) Las lagunas del Campo de Calatrava (Ciudad Real). Botánica Complutensis 14:9–50

    Google Scholar 

  • Vicente E, Rosa Miracle MR (1998) Estudio limnológico de 28 humedales de Castilla La Mancha como base para la elaboración del Plan de Ordenación de recursos Naturales. Universidad de Valencia y Junta de Comunidades de Castilla La Mancha, Toledo

    Google Scholar 

  • Viladomiu L, Rosell J (1997) Gestión del agua y política agroambiental: el Programa de Compensación de Rentas por reducción de regadíos en Mancha Occidental y Campo de Montiel. Revista Española de Economía Agraria 179:331–350

    Google Scholar 

  • Wang L, Lyons J, Kanehl P, Gatti R (1997) Influences of watershed land use on habitat quality and biotic integrity in Wisconsin streams. Fisheries 22:6–12

    Article  Google Scholar 

  • Wang Y, Hong W, Wu C, He D, Lin S, Fan H (2008) Application of landscape ecology to the research on wetlands. J For Res 19:164–170

    Article  Google Scholar 

  • Zhang J, Ma K, Fu B (2009) Wetland loss under the impacto of agricultural development in the Sanjiang Plain, NE China. Environ Monitor Assess. doi:10.1007/s10661-009-0990-x

    Google Scholar 

Download references

Acknowledgments

The authors thank to the Junta de Castilla-La Mancha by providing spatial information on the Upper Guadiana River basin. RSA was supported by a CSIC JAE-Doc contract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sánchez-Andrés .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Sánchez-Andrés, R., Viedma, M.O., Sánchez-Carrillo, S. (2010). The Effects of Anthropogenic Stressors on Wetland Loss and Habitat Quality Deterioration in the Upper Guadiana River Basin: A Long-Term Assessment (1970–2000). In: Sánchez-Carrillo, S., Angeler, D. (eds) Ecology of Threatened Semi-Arid Wetlands. Wetlands: Ecology, Conservation and Management, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9181-9_4

Download citation

Publish with us

Policies and ethics