Skip to main content

Bayesian VAR Modelling ‘from General to Specific’

  • Chapter
  • First Online:
  • 1095 Accesses

Part of the book series: The Springer Series on Demographic Methods and Population Analysis ((PSDE,volume 24))

Abstract

The current chapter outlines the second of proposed perspectives on migration forecasting, which applies the ‘from general to specific’ modelling principle in the context of nested vector autoregression (VAR) models. In this way, the impact of various theory-based interdependent variables on migration can be tested. Similarly to the previous chapter, Section 6.1 outlines the theoretical foundations of VAR modelling, while Section 6.2 illustrates the approach with empirical forecasts for emigration rates among the countries under study.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    See also Section 5.3 for more details on the construction of Minnesota priors.

  2. 2.

    In migration studies interesting properties of the estimated VAR models have been tested by Gorbey et al. (1999, pp. 78–84), who, however, had longer time series at their disposal – about 80 quarterly observations.

  3. 3.

    The Wishart distribution is a multivariate generalisation of the Gamma distribution (in particular, of the chi-squared distribution). Again, following the parameterisation used in the WinBUGS manual, for \(x\sim \chi ^2 (k)\), the density is \(p(x\left| k \right.) = 2^{ - k/2 } x^{k/2 - 1 } \exp ( - x/2)/\Gamma (k/2)\), where \(x > 0\) is Euler’s Gamma function. In general, for a random vector x ~ Wishart(P, k), \(p({\textbf{x}}\left| {{\textbf{P}},\;k} \right.) \propto (\det \;{\textbf{P}})^{k/2 } \left| {\textbf{x}} \right|^{(k - n - 1)/2 } \exp [ - 1/2 \cdot {\textrm{tr}}({\textbf{Px}})]\), where tr(·) is a matrix trace (a sum of the diagonal elements) and x is an n-dimensional symmetric and positive definite matrix. As in the case of τ in Chapter 5, elements of T refer to the precision of log-transformed variables, and thus to the precision with respect to the orders of magnitude for crude emigration rates.

  4. 4.

    The prior for the Wishart distribution parameter P can be for example elicited as follows: the symmetric matrix P/k can be decomposed into a matrix product \({\textbf{P}}/k = {\textbf{D}}\;{\textbf{R}}\;{\textbf{D}}\), where \({\textbf{D}} = [d_{ij} ]_{k\,{\textrm{x}}\,k}\) denotes a very highly probable a priori diagonal matrix of standard deviations and \({\textbf{R}} = [r_{ij} ]_{k{\textrm{ x }}k}\) a very highly probable a priori symmetric matrix of Pearsonian correlations between particular variables (credit to Jacek Osiewalski). Under such transformation, in the precision classes listed in Table 7.1, the prior assumptions are thus: for very low precision: \(d_{ii} = 0.71\) and \(r_{ij} = - 0.02\) (for \(i \ne j\)); for low precision: \(d_{ii} = 0.58\) and \(r_{ij} = - 0.02\); for medium precision: \(d_{ii} = 0.32\) and \(r_{ij} = - 0.03\); and for high precision: \(d_{ii} = 0.22\) and \(r_{ij} = - 0.03\). Naturally, in all cases by definition holds: \(r_{ii} = 1\) and \(d_{ij} = 0\) for \(i \ne j\).

  5. 5.

    Note the relationship between the chi-squared and Gamma distributions: \({\chi ^2} _{(k)} \equiv \Gamma (1/2 \cdot k,\;1/2)\), as well as the scaling property of the Gamma distribution: \(X\sim \Gamma (r,\;\mu ) \Rightarrow k \cdot X\sim \Gamma (r,\mu /k)\).

  6. 6.

    For yearly values of forecasted median trajectories of migration determinants, see Table C.3b in Annex C.

  7. 7.

    For detailed posterior summaries of parameters of the VAR(1) models under study, see Table C.1 in Annex C.

References

  • Bauwens, L., Lubrano, M., & Richard, J.-F. (1999). Bayesian inference in dynamic econometric models. Oxford, MA: Oxford University Press.

    Google Scholar 

  • Charemza, W. W., & Deadman, D. F. (1992). New directions in econometric practice. Aldershot: Edward Elgar [(1997). Nowa ekonometria. Warszawa: PWE].

    Google Scholar 

  • Cooley, T. F., & LeRoy, S. F. (1985). Atheoretical macroeconomics: A critique. Journal of Monetary Economics, 16(3), 283–308.

    Article  Google Scholar 

  • Fertig, M., & Schmidt, C. M. (2000). Aggregate-level migration studies as a tool for forecasting future migration streams (IZA Discussion paper 183). Institut zur Zukunft der Arbeit, Bonn.

    Google Scholar 

  • Gorbey, S., James, D., & Poot, J. (1999). Population forecasting with endogenous migration: An application to trans-tasman migration. International Regional Science Review, 22(1), 69–101.

    Article  Google Scholar 

  • Greene, W. H. (2000). Econometric analysis. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Hendry, D. F. (1995). Dynamic econometrics. Oxford, MA: Oxford University Press.

    Book  Google Scholar 

  • Jennissen, R. (2004). Macro-economic determinants of international migration in Europe. Amsterdam: Dutch University Press.

    Google Scholar 

  • Litterman, R. B. (1979). Techniques of forecasting using vector autoregressions (Working Paper No. 115). Federal Reserve Bank of Minneapolis, Minneapolis, MN.

    Google Scholar 

  • Osiewalski, J. (2001). Ekonometria bayesowska w zastosowaniach [Bayesian econometrics in applications]. Cracow: Cracow University of Economics.

    Google Scholar 

  • Osiewalski, J., & Steel, M. F. J. (1996). A Bayesian analysis of exogeneity in models pooling time-series and cross-sectional data. Journal of Statistical Planning and Inference, 50(2), 187–206.

    Article  Google Scholar 

  • Ramos, F. F. R. (1996). VAR priors: Success or lack of a decent macroeconomic theory? Econometrics, Economics Working Paper Archive EconWPA, Internet Resource; econwpa.wustl.edu/eps/em/papers/9601/ 9601002.pdf. Accessed 31 July 2006.

    Google Scholar 

  • Sanderson, W. (1998). Knowledge can improve forecasts: A review of selected socioeconomic population projection models. Population and Development Review, 24(Suppl.), 88–117.

    Article  Google Scholar 

  • Sims, C. A. (1980). Macroeconomics and Reality. Econometrica, 48(1), 1–48.

    Article  Google Scholar 

  • Sinn, H.-W., Flaig, G., Werding, M., Munz, S., Duell, N., & Hofmann, H. (2001). EU-Erweiterung und Arbeitskräftemigration, Wege zu einer schrittweisen Annäherung der Arbeitsmärkte. IFO-Institut für Wirtschaftsforschung, München.

    Google Scholar 

  • Wróblewska, J. (2009). Bayesian model selection in the analysis of cointegration. Central European Journal of Economic Modelling and Econometrics, 1(1), 57–69; http://www.cejeme.eu.

    Google Scholar 

  • Zellner, A. (1971). An introduction to Bayesian inference in econometrics. New York: Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub Bijak .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bijak, J. (2011). Bayesian VAR Modelling ‘from General to Specific’. In: Forecasting International Migration in Europe: A Bayesian View. The Springer Series on Demographic Methods and Population Analysis, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8897-0_6

Download citation

Publish with us

Policies and ethics