Skip to main content

Comparative Taphonomy and Sedimentology of Small-Scale Mixed Carbonate/Siliciclastic Cycles: Synopsis of Phanerozoic Examples

  • Chapter
  • First Online:
Taphonomy

Part of the book series: Aims & Scope Topics in Geobiology Book Series ((TGBI,volume 32))

Abstract

Small scale cycles deposited over 10–100 kyr are a common component of Phanerozoic shelfal deposits. A combination of detailed outcrop analysis and data-mining from published literature of cycles largely deposited in greenhouse regimes reveals a series of recurring sedimentological, paleoecological, and taphonomic motifs. In general, each cycle is composed of three to four components: (a) a basal skeleton-rich bed with evidence of condensation and, in some cases mineralization; (b) a medium-dark gray siliciclastic mudstone/shale interval; (c) a calcareous and/or silty mudstone interval with common concretionary, diagenetic overprint. A series of exemplars are highlighted from proximal and distal shelf settings and described using a depositional sequence approach. The cycles studied include examples deposited under greenhouse (Cambrian, Ordovician, Devonian, Jurassic and Cretaceous) and, for comparison purposes, icehouse (Neogene) conditions. The fact that repetitive patterns can characterize deposits that formed over a 500 million year interval is striking. The primary taphonomic moderator in these cycles is rate of sedimentation, which varies exponentially from sediment-starved concentrations to obrutionary deposits. The occurrence of a persistent motif over this time scale suggests that biological innovations, which might be expected to impact upon fossil preservation, have in fact been overprinted by the extremes of sedimentation preserved in these small-scale cycles. Having a skeleton, which is twice as resistant to abrasion, is of little import when sedimentation is dominated by the extremes: instant obrution or condensation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott, S. T. (1997). Mid-cycle condensed shell beds from mid-Pleistocene cyclothems, New Zealand: Implications for sequence architecture. Sedimentology, 44, 805–824.

    Google Scholar 

  • Abbott, S. T., & Carter, R. A. (1994). The sequence architecture of mid-Pleistocene (c. 1.1—0.4 Ma) cyclothems from New Zealand: Facies development during a period of orbital control on sea-level cyclicity. American Association of Petroleum Geological Special Publication, 19, 367–394.

    Google Scholar 

  • Abbott, S. T., & Carter, R. A. (1997). Macrofossil associations from mid-Pleistocene cyclothems, Castlecliff Section, New Zealand: Implications for sequence stratigraphy. Palaios, 12, 188–210.

    Google Scholar 

  • Addi, A. A. (2006). The dogger reef horizons of the Moroccan central high atlas: New data on their development. Journal of African Earth Sciences, 45, 162–172.

    Google Scholar 

  • Algeo, T. J., Berner, R. A., Maynard, J. B., & Scheckler, S. E. (1995). Late Devonian oceanic anoxic events and biotic crises: “Rooted” in the evolution of land plants? Geological Society of America Today, 5, 64–66.

    Google Scholar 

  • Algeo, T. J., Scheckler, S. E., & Maynard, J. B. (2001). Effects of the middle to Late Devonian spread of vascular land plants on weathering regimes, marine biota and global climate. In P. Gensel & D. Edwards (Eds.), Plants invade the land, evolutionary and environmental approaches (pp. 213–236). New York: Columbia University Press.

    Google Scholar 

  • Aller, R. C. (1982). Carbonate dissolution in nearshore terrigenous muds. The role of physical and biological reworking. Journal of Geology, 90, 79–95.

    Google Scholar 

  • Allison, P. A., Brett, C. E., Paul, C. R. C., Bilton, J. (in press) Taphonomy of ammonite Konservat Lagerstättten in the early Jurassic blue lias formation of Dorset, UK. Journal of the Geological Society of London

    Google Scholar 

  • Allison, P. A., & Wells, M. R. (2006). Circulation in large ancient epicontinental seas: What was different and why? Palaios, 21, 513–515.

    Google Scholar 

  • Anderton, R., Bridges, P. H., Leeder, M. R., & Sellwood, B. W. (1979). A dynamic stratigraphy of the British Isles. London: George Allen & Unwin. 301 pp.

    Google Scholar 

  • Bambach, R. K. (2006). Phanerozoic biodiversity mass extinctions. In R. Jeanloz, A. L. Albee, K. C. Burke, & K. C. Freeman (Eds.), Annual Review of Earth and Planetary Sciences, 34 (pp. 127–155).

    Google Scholar 

  • Banerjee, I., & Kidwell, S. M. (1991). Significance of molluscan shell beds in sequence stratigraphy: An example from the Lower Cretaceous Mannville Group of Canada. Sedimentology, 38, 913–934.

    Google Scholar 

  • Baird, G. C., & Brett, C. E. (1986). Erosion on an anaerobic seafloor: Significance of reworked pyrite deposits from the Devonian of New York State. Palaeogeography Palaeoclimatology Palaeoecology, 57, 157–193.

    Google Scholar 

  • Baird, G. C., & Brett, C. E. (1991). Submarine erosion on the anoxic seafloor: Stratinomic, palaeoenvironmental, and temporal significance of reworked pyrite-bone deposits. In R. V. Tyson & T. H. Pearson (Eds.), Modern and ancient continental shelf anoxia, Geological Society of America, Special Publication (pp. 233–257).

    Google Scholar 

  • Batt, R. (1996). faunal and lithological evidence for small-scale cyclicity in the Wanakah Shale (Middle Devonian) of western New York. Palaios, 11, 230–243.

    Google Scholar 

  • Becker, R. T., Aboussalam, Z. S., Bockwinkel, J., Ebbinghausen, V., El Hassani, A., & Nübel, H. (2004a). Upper Emsian stratigraphy at Rich Tamelougou near Torkoz SW Dra Valley, Morocco. In R. T. Becker & El A. Hassani (Eds.), Devonian of the western anti atlas: Correlation and events (pp. 85–89). Documente Institute de Sciences de Rabat 19.

    Google Scholar 

  • Becker, R. T., Bockwinkel, J., Ebbinghausen, V., Aboussalam, Z. S., El Hassani, A., & Nübel, H. (2004b). Lower and Middle Devonian stratigraphy and faunas at Bou Tserfine near Assa (Dra Valley, SW Morocco). In R. T. Becker & A. El Hassani (Eds.), Devonian of the western anti atlas: Correlation and events (pp. 90–100). Documente Institute de Sciences de Rabat 19.

    Google Scholar 

  • Bennett, K. D. (1990). Milankovitch cycles and their effect on species in ecological and evolutionary time. Paleobiology, 16, 11–21.

    Google Scholar 

  • Berger, A., Loutre, M. F., & Laskar, J. (1992). Stability of the astronomical frequencies over Earth’s history for paleoclimatic studies. Science, 255, 560–566.

    Google Scholar 

  • Botquelen, A., Gourvennec, R., Loi, A., Pilola, G. L., & Leone, F. (2006). Replacements of benthic associations in a sequence stratigraphic framework, examples from Upper Ordovician of Sardina and Lower Devonian of the Massif Amoricain. Palaeogeography Palaeoclimatology Palaeoecology, 239, 286–310.

    Google Scholar 

  • Bottrell, S., & Raiswell, R. (1990). Primary versus diagenetic origin of Blue Lias rhythms (Dorset, UK): Evidence from sulphur geochemistry. Terra Nova, 1, 451–456.

    Google Scholar 

  • Boucot, A. J. (1975). Evolution and extinction rate controls. Amsterdam: Elsevier. 427p.

    Google Scholar 

  • Boucot, A. J. (1982). Ecostratigraphic framework for the Lower Devonian of the North American Appohimchi Subprovince. Neuse Jahrbuch für Geologie und Paläontologie, Abhandlungen, 163, 81–121.

    Google Scholar 

  • Boucot, A. J., Lawson, J. D., & Eds. (1999). Paleocommunities – A case study from the Silurian and Lower Devonian. World and regional geology series no. 10. New York: Cambridge University Press. 912 pp.

    Google Scholar 

  • Boyer, D. L., & Droser, M. (2003). Shell beds of the Kanosh and Lehman Formations of western Utah; paleoecological and paleoenvironmental interpretations. Geology Studies, Brigham Young University, 47, 1–15.

    Google Scholar 

  • Boyer, D. L., & Droser, M. L. (2007). Devonian monospecific assemblages: New insights into the ecology of reduced-oxygen depositional settings. Lethaia, 40, 321–333.

    Google Scholar 

  • Brett, C. E. (1995). Sequence stratigraphy, biostratigraphy, and taphonomy in shallow marine environments. Palaios, 10, 597–616.

    Google Scholar 

  • Brett, C. E. (1998). Sequence stratigraphy, paleoecology, and evolution: Biotic clues and responses to sea-level fluctuations. Palaios, 13, 241–262.

    Google Scholar 

  • Brett, C. E., & Baird, G. C. (1985). Carbonate shale cycles in the Middle Devonian of New York: An evaluation of models for the origin of limestones in terrigenous shelf sequences. Geology, 13, 324–327.

    Google Scholar 

  • Brett, C. E., & Baird, G. C. (1986a). Symmetrical and upward shallowing cycles in the Middle Devonian of New York: Implications for the punctuated aggradational cycle hypothesis. Paleoceanography, 1, 431–447.

    Google Scholar 

  • Brett, C. E., & Baird, G. C. (1986b). Comparative taphonomy: A key to paleoenvironmental interpretation based on fossil preservation. Palaios, 1, 207–227.

    Google Scholar 

  • Brett, C. E., & Baird, G. C. (1996). Middle Devonian sedimentary cycles and sequences in the northern Appalachian basin. In B. J. Witzke, G. A. Ludvigson, & J. Day (Eds.), Paleozoic sequence stratigraphy: Views from the North American Craton. Geological Society of America Special Paper 306 (pp. 213–241).

    Google Scholar 

  • Brett, C. E., & Algeo, T. J. (2001a). Event beds and small-scale cycles in Edenian to lower Maysvillian strata (Upper Ordovician) of northern Kentucky: Identification, origin, and temporal constraints. In T. A. Algeo & C. E. Brett (Eds.), Sequence, cycle, and event stratigraphy of upper Ordovician and Silurian strata of the Cincinnati arch region, Kentucky geological survey field trip guidebook 1, Series XII (pp. 65–86).

    Google Scholar 

  • Brett, C. E., & Algeo, T. J. (2001b). Sequence stratigraphy of the upper Ordovician Kope formation in its type area, Northern Kentucky, including a revised nomenclature. In T. A. Algeo & C. E. Brett (Eds.), Sequence, cycle, and event stratigraphy of upper Ordovician and Silurian strata of the Cincinnati arch region, Kentucky geological survey field trip guidebook 1, Series XII (pp. 47–64).

    Google Scholar 

  • Brett, C. E., & Seilacher, A. (1991). Fossil Lagerstätten: A taphonomic consequence of event sedimentation. In G. Einsele, W. Ricken, & A. Seilacher (Eds.), Cycles and events in stratigraphy (pp. 284–297) Berlin: Springer.

    Google Scholar 

  • Brett, C. E., Algeo, T. J., & McLaughlin, P. I. (2003). The use of event beds and sedimentary cycles in high-resolution stratigraphic correlation of lithologically repetitive successions: The upper Ordovician Kope formation of northern Kentucky and southern Ohio. In P. Harries & D. Geary (Eds.), High-resolution stratigraphic approaches to paleobiology (pp. 315–351). Boston: Plenum.

    Google Scholar 

  • Brett, C. E., Allison, P. A., DeSantis, M., Liddell, W. D., & Kramer, T. (2009). Sequence stratigraphy, cyclic facies, and lagerstätten in the Middle Cambrian Wheeler and Marjum Formations, Great Basin, Utah. Palaeogeography Palaeoclimatology Palaeoecology, 277, 9–33.

    Google Scholar 

  • Brett, C. E., Allison, P. A., Tsuijita, C., Soldani, D., & Moffat, H. (2006). Sedimentology, taphonomy and paleoecology of meter-scale cycles from the upper Ordovician of Ontario. Palaios, 21, 530–547.

    Google Scholar 

  • Brett, C. E., Bartholomew, A. J., & Baird, G. C. (2007a). Biofacies recurrence in the Middle Devonian of New York state: An example with implications for habitat tracking. Palaios, 22, 306–324.

    Google Scholar 

  • Brett, C. E., Dick, V. B., & Baird, G. C. (1991). Comparative taphonomy and paleoecology of Middle Devonian dark gray and black shale facies from western New York. In E. Landing & C. E. Brett (Eds.), Dynamic stratigraphy and depositional environments of the Hamilton Group in New York Pt. II. NY State Museum Bulletin 469 (pp. 5–36).

    Google Scholar 

  • Brett, C. E., Hendy, A. J. W., Bartholomew, A., Bonelli, J., & McLaughlin, P. (2007b). Response of shallow marine biotas to sea level fluctuations: Faunal replacement and the process of habitat tracking. Palaios, 22, 230–246.

    Google Scholar 

  • Brett, C. E., Kohrs, R., & Kirchner, B. (2008). Paleontological event beds from the upper Ordovician Kope formation of Ohio and northern Kentucky and the promise of high-resolution event stratigraphy. In P. I. McLaughlin, C. E. Brett, & S. M. Holland (Eds.), Stratigraphic renaissance in the Cincinnati arch: Implications for upper Ordovician paleontology and paleoecology. Cincinnati Museum Center Special Publication 2 (pp. 64–87).

    Google Scholar 

  • Bromley, R. G. (1967). Some observations on burrows of thalassinidean Crustaceans on chalk hardgrounds. Quarterly Journal Geological Society of London, 123, 157–182.

    Google Scholar 

  • Bromley, R. G. (1968). Burrows and borings in hardgrounds. Meddeleser Dansk Geologisk Forening, 18, 247–250.

    Google Scholar 

  • Bush, A. M., Bambach, R. K., & Daley, G. M. (2007). Changes in theoretical ecospace utilization in marine fossil assemblages between the mid-Paleozoic and late Cenozoic. Paleobiology, 33, 76–97.

    Google Scholar 

  • Campbell, K. S. W. (1977). Trilobites of the Haragan, Bois d’Arc and Frisco Formations (Early Devonian), Arbuckle Mountains region, Oklahoma. Bulletin of Oklahoma Geological Survey, 123, 1–227.

    Google Scholar 

  • Cantalamessa, G., Di Celma, C., & Ragaini, L. (2005). Sequence stratigraphy of the Punta Ballena member of the Jama formation (early Pleistocene, Ecuador): Insights from integrated sedimentologic, taphonomic and paleoecologic analysis of molluscan shell concentrations. Palaeogeography Palaeoclimatology Palaeoecology, 216, 1–25.

    Google Scholar 

  • Carter, R. M., Abbott, S. T., Graham, I. J., Naish, T. R., & Gammon, P. R. (2002). The middle Pleistocene Merced-2 and -3 sequences from Ocean Beach, San Francisco. Sedimentary Geology, 153, 23–41.

    Google Scholar 

  • Caster, K. E., Dalvé, E. A., & Pope, J. K. (1955). Elementary guide to the fossils and strata of the Ordovician in the vicinity of Cincinnati (47 p). Ohio: Cincinnati Museum of Natural History, Cincinnati.

    Google Scholar 

  • Catuneanu, O. (2002). Sequence stratigraphy of clastic systems: Concepts, merits, and pitfalls. Journal of African Earth Science, 35, 1–43.

    Google Scholar 

  • Catuneanu, O. (2006). Principles of sequence stratigraphy. New York: Elsevier. 386 p.

    Google Scholar 

  • Chatterton, B. D. E., Fortey, R., Brett, K., Gibb, S., & McKellar, R. (2006). Trilobites from the upper lower to middle Devonian Timrhanrhart formation, Jbel gara el Zguilma, southern Morocco. Palaeontographica Canadiana, 25, 1–177.

    Google Scholar 

  • Coe, A. L. (2003). The sedimentary record of sea-level change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Cotter, E., & Link, J. E. (1993). Deposition and diagnesis of Clinton ironstones (Silurian) in the Appalachian foreland basin of Pennsylvania. Geological Society of America Bulletin, 105(7), 911–922.

    Google Scholar 

  • Cox, B. M., Sumbler, M. G., & Ivimey-Cook, H. C. (1999). A formational framework for the Lower Jurassic of England and Wales (onshore area). British Geological Survey Research Report RR/99/01.

    Google Scholar 

  • Dabard, M.-P., Loi, A., & Paris, F. (2007). Relationship between phosphogenesis and sequence architecture: Sequence stratigraphy and biostratigraphy in the Middle Ordovician of the Armorican Massif (NW France). Palaeogeography Palaeoclimatology Palaeoecology, 248, 339–356.

    Google Scholar 

  • deBoer, P. L., & Smith, D. G. (Eds.). (1994). Orbital forcing and cyclic sequences. International Association of Sedimentologists Special Publication 19 (pp. 219–225).

    Google Scholar 

  • Di Celma, C., Ragaini, L., Cantalamessa, G., & Curzio, P. (2002). Shell concentrations as tools in characterizing sedimentary dynamics at sequence-bounding unconformities: Examples from the lower unit of the Canoa Formation (late Pliocene Ecuador). Géobios Mémoire Spécial, 24, 72–85.

    Google Scholar 

  • Del Rio, C. J., Mártinez, S. A., & Scasso, R. A. (2001). Nature and origin of spectacular marine Miocene shell beds of northeastern Patagonia (Argentina): Paleoecological and bathymetric significance. Palaios, 16, 3–25.

    Google Scholar 

  • DiMichele, W. A., Behrensmeyer, A. K., Olszewski, T. D., Labandeira, C. C., Pandolfi, J. M., Wing, S. L., et al. (2004). Long-term stasis in ecological assemblages: Evidence from the fossil record. Annual Reviews of EcologyEvolution, and Systematics, 2004, 285–322.

    Google Scholar 

  • Dominici, S. (2001). Taphonomy and paleoecology of shallow marine macrofossil assemblages in a collisional setting (late Pliocene-early Pleistocene, Western Emilia, Italy). Palaios, 16, 336–353.

    Google Scholar 

  • Droser, M. L., & Bottjer, D. J. (1988). Trends in depth and extent of bioturbation in carbonate carbonate marine environments. Geology, 16, 233–236.

    Google Scholar 

  • Einsele, G., & Ricken, W. (1991). Limestone-marl alternations – An overview. In G. Einsele, W. Ricken, & A. Seilacher (Eds.), Cycles and events in stratigraphy (pp. 23–47). Berlin: Springer.

    Google Scholar 

  • Elder, W. P., Gustason, E. R., & Sageman, B. B. (1994). Correlation of basinal carbonate cycles to nearshore parasequences in the Late Cretaceous Greenhorn seaway, Western interior U.S.A. Geological Society of America Bulletin, 106, 892–902.

    Google Scholar 

  • Elliott, C. (1996). Recognition and stratigraphic use of orbitally-forced limestone-shale cycles from the Lower Jurassic Blue Lias Formation of Britain: A taphonomic approach. Geological Society of America (Abstracts with Programs), 28(7), 308.

    Google Scholar 

  • Ellwood, B., Brett, C. E., Tomkin, J., & MacDonald, W. D. (2007). Magnetostratigraphy susceptibility of the Upper Ordovician Kope Formation, northern Kentucky. Palaeogeography Palaeoclimatology Palaeoecology, 210, 295–329.

    Google Scholar 

  • Elrick, M., & Snider, A. C. (2002). Deep-water stratigraphic cyclicity and carbonate mud mound development in the Middle Cambrian Marjum formation, House Range, Utah, USA. Sedimentology, 49, 1021–1047.

    Google Scholar 

  • Fernandez-López, S. R. (2007). Ammonoid taphonomy, paleoenvironments and sequence stratigraphy at the Bajocian/Bathonian boundary on the Bas Auran area (Subapline Basin, south-eastern France. Lethaia, 40, 377–391.

    Google Scholar 

  • Fernandez-López, S. R., Duarte, L. V., & Henriques, M. H. P. (2000). Ammonites from lumpy limestones (Lower Pleinsbachian, Portugal). Taphonomic analysis and paleoenvironmental implications. Revista Sociedad Geologica de España, 13, 3–15.

    Google Scholar 

  • Fernandez-López, S. R., Henriques, M. H. P., & Duarte, L. V. (2002). Taphonomy of ammonite condensed associations: Jurassic examples from carbonate platforms of Iberia. Abhandlungen der Geologischen Bundesanstalt, 57, 423–450.

    Google Scholar 

  • Fischer, A. G. (1980). Gilbert-type bedding rhythms and geochronology. In E. I. Yochelson (Ed.), The scientific ideas of G.K. Gilbert. Geological Society of America Special Paper 11833 (pp. 93–104).

    Google Scholar 

  • Fischer, A. G. (1984). The two Phanerozoic supercycles. In W. A. Berggren & J. A. Van Couvering (Eds.), Catastrophes in earth history (pp. 129–150). Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Fürsich, F. T. (1978). The influence of faunal condensation and mixing on the preservation of fossil benthic communities. Lethaia, 11, 243–250.

    Google Scholar 

  • Fürsich, F. T., & Aberhan, M. (1990). Significance of time-averaging for paleocommunity analysis. Lethaia, 23, 143–152.

    Google Scholar 

  • Fürsich, F. T., & Oschmann, W. (1993). Shell beds as tools in basin analysis: The Jurassic of Kachchh, western India. Journal of the Geological Society of London, 150, 169–185.

    Google Scholar 

  • Fürsich, F. T., & Pandey, D. K. (1999). Genesis and environmental significance of Upper Cretaceous shell concentrations from the Cauvery Basin southern India. Palaeogeography Palaeoclimatology Palaeoecology, 145, 119–139.

    Google Scholar 

  • Fürsich, F. T., & Pandey, D. K. (2003). Sequence stratigraphic significance of sedimentary cycles and shell concentrations in the Upper Jurassic-Lower Cretaceous of Kachchh, western India. Palaeogeography Palaeoclimatology Palaeoecology, 193, 285–309.

    Google Scholar 

  • Gaines, R. R., & Droser, M. I. (2003). Paleoecology of the familiar trilobite Elrathia kingii: An early exaerobic zone inhabitant. Geology, 31, 941–944.

    Google Scholar 

  • Gaines, R. R., & Droser, M. L. (2005). New approaches to understanding the mechanics of Burgess Shale-type deposits: From the micron scale to the global picture. The Sedimentary Record, 3, 4–8.

    Google Scholar 

  • Gaines, R. R., Kennedy, M. J., & Droser, M. L. (2005). A new hypothesis for organic preservation of Burgess Shale taxa in the Middle Cambrian Wheeler Formation, House Range, Utah. Palaeogeography Palaeoclimatology Palaeoecology, 220, 193–205.

    Google Scholar 

  • Gallois, R. W. (2000). The stratigraphy of the Kimmeridge Clay (Upper Jurassic) in the RGGE Project boreholes at Swanworth Quarry and Metherhills, south Dorset. Proceedings of the Geologists’ Association, II1, 265–280.

    Google Scholar 

  • Gilbert, G. K. (1895). Sedimentary measurement of geologic time. Geology, 3, 121–127.

    Google Scholar 

  • Greensmith, J. T., Rawson, P. F., & Shalaby, S. E. (1980). An association of minor fining upward cycles and aligned gutter marks in the Middle Lias (Lower Jurassic) of the Yorkshire Coast. Proceedings of Yorkshire Geological Society, 42, 525–538.

    Google Scholar 

  • Hallam, A. (1957). Primary origin of the limestone-shale rhythm in the British Lower Lias. Geological Magazine, 94, 175–176.

    Google Scholar 

  • Hallam, A. (1960). A sedimentary and faunal study of the Blue Lias of Dorset and Glamorgan. Philosophical Transactions of the Royal Society London, B243, 1–44.

    Google Scholar 

  • Hallam, A. (1964). Origin of the limestone-shale rhythm in the Blue Lias of England: a composite theory. Journal of Geology, 72, 157–169.

    Google Scholar 

  • Hallam, A. (1966). Depositional environment of British Liassic ironstones considered in the context of their facies relationships. Nature, 209, 1306–1309.

    Google Scholar 

  • Hallam, A. (1967). Siderite- and calcite-bearing concretionary nodules in the Lias of Yorkshire. Geological Magazine, 104, 222–227.

    Google Scholar 

  • Hallam, A. (1986). Origin of minor limestone-shale cycles: Climatically induced or diagenetic. Geology, 14, 609–612.

    Google Scholar 

  • Hallam, A., & Bradshaw, M. J. (1979). Bituminous shales and oolitic ironstones as indicators of transgressions and regressions. Journal of Geological Society, 136, 157–164.

    Google Scholar 

  • Hampson, G. J., Howell, J. A., & Flint, S. S. (1999). A Sedimentological and sequence stratigraphic re-interpretation of the Upper Cretaceous Prairie Canyon member (“Mancos B”) and associated strata, Book Cliffs Area, Utah, U.S.A. Journal of Sedimentory Research: Stratigraphic and Global Studies, 69, 414–433.

    Google Scholar 

  • Hancock, J. L. (1975). Petrology of the chalk. Proceedings of the Geologists’ Association, 86, 499–553.

    Google Scholar 

  • Hattin, D. E. (1971). Widespread, synchronously deposited, burrow mottled limestone beds in Greenhorn Limestone (Upper Cretaceous of Kansas and southeastern Colorado). American Association of Petroleum Geologists Bulletin, 55, 412–451.

    Google Scholar 

  • Hattin, D. E. (1977a). Upper Cretaceous stratigraphy, paleontology and paleoecology of western Kansas. Mountain Geologist, 144, 176–217.

    Google Scholar 

  • Hattin, D. E. (1977b). Articulated lepadomorph cirripeds from the Upper Cretaceous of Kansas: family Stramentidae. Journal of Paleontology, 51, 797–825.

    Google Scholar 

  • Hattin, D. E. (1982a). Stratigraphy and depositional environments pf Smoky Hill Chalk Member, Niobrara Chalk (Upper Cretaceous) of the type area, western Kansas. Kansas State Geological Survey Bulletin, 225, 1–85.

    Google Scholar 

  • Hattin, D. E. (1982b). Distribution, and significance of widespread time-parallel pelagic limestone beds in Greenhorn Limestone (Upper Cretaceous) of the central Great Plains and southern Rocky Mountain. In E. G. Kauffman, L. M. Pratt, & F. B. Zelt (Eds.), Fine-grained deposits and biofacies of the Cretaceous western Interior Seaway: Evidence of cyclic sedimentary processes. SEPM guidebook 4 (pp. 28–37). Oklahoma: Tulsa.

    Google Scholar 

  • Hayasaka, R. (1991). Sedimentary facies and environments of the Oligocene Ashiya Group in the Kitakyushu-Ashiya area, Southwest Japan. Journal of the Geological Society of Japan, 97, 607–619.

    Google Scholar 

  • Hemingway, J. E. (1934). The Lias of the Yorkshire coast. Proceedings of the Geologists’ Association, 45, 250–260.

    Google Scholar 

  • Hemingway, J. E. (1951). Cyclic sedimentation and the deposition of ironstone in the Yorkshire Lias. Proceedings of the Yorkshire Geological Society, 28, 67–74.

    Google Scholar 

  • Hemingway, J. E. (1974). Ironstone. In D. H. Rayner & J. E. Hemingway (Eds.), The Geology and Mineral Resources of Yorkshire, Yorkshire Geological Society (pp. 329-335).

    Google Scholar 

  • Hendy, A. J. W. (this volume). Lithification and other taphonomic overprints on Phanerozoic trends in biodiversity. Taphonomy: Process and bias through time. Springer Berlin.

    Google Scholar 

  • Hendy, A. J. W., & Kamp, P. J. J. (2007). Paleoecology and sequence stratigraphy of Late Miocene-Early Pliocene sixth-order glacioeustatic cycles in the Manutahi-1 core, Wanganui Basin, New Zealand. Palaios, 23, 25–42.

    Google Scholar 

  • Hendy, A. J. W., Kamp, P. J. J., & Vonk, A. (2006). Cool-water shell bed taphofacies from Miocene-Pliocene shelf sequences in New Zealand: Utility in sequence stratigraphic analysis. In H. M. Pedley & G. Carannate (Eds.), Cool-water carbonates: Depositional systems and palaeoenvironmental control (pp. 285–307). London: Geological Society. Special Publications 255.

    Google Scholar 

  • Hesselbo, S. P., & Jenkyns, H. C. (1996). A comparison of the Hettangian to Bajocian successions of Dorset and Yorkshire. In P. D. Taylor (Ed.), Field geology of the British Jurassic (pp. 105–150). London: Geological Society.

    Google Scholar 

  • Hinnov, L. A. (2000). New perspectives on orbitally forced stratigraphy. Annual Review of Earth and Planetary Sciences, 28, 419–475.

    Google Scholar 

  • Hinnov, L. A. (2004). Earth’s orbital parameters and cycle stratigraphy. In F. M. Gradstein, J. Ogg, & A. G. Smith (Eds.), A geologic time scale (pp. 142–165). Cambridge: Cambridge University Press.

    Google Scholar 

  • Hintze, L. F., & Robison, R. A. (1975). Middle Cambrian stratigraphy of the house, Wah Wah, and adjacent ranges in western Utah. Geological Society of America Bulletin, 86, 881–891.

    Google Scholar 

  • Hintze, L. F., & Davis, F. D. (2003) Geology of Millard County, Utah. Utah Geological Survey Bulletin no. 133 (305 p).

    Google Scholar 

  • Holland, S. M., Miller, A. I., Dattilo, B. F., Meyer, D. L., & Diekmeyer, S. L. (1997). Cycle anatomy and variability in the storm-dominated type Cincinnatian (Upper Ordovician): Coming to grips with cycle delineation and genesis. Journal of Geology, 105, 135–152.

    Google Scholar 

  • Holland, S. M., Miller, A. I., & Meyer, D. L. (2001a). Sequence stratigraphy of the Kope-fairview interval (Upper Ordovician, Cincinnati, Ohio area). In T. A. Algeo & C. E. Brett (Eds.), Sequence, cycle, and event stratigraphy of Upper Ordovician and Silurian strata of the Cincinnati arch region, Kentucky Geological Survey Field Trip Guidebook 1, Series XII (pp. 93–102).

    Google Scholar 

  • Holland, S. M., Miller, A. I., Meyer, D. L., & Datillo, B. F. (2001b). The detection and importance of subtle biofacies within a single lithofacies: The Upper Ordovician Kope formation of the Cincinnati, Ohio region. Palaios, 16, 205–217.

    Google Scholar 

  • Hollard, H. (1967). Le Dévonien du Maroc et du Sahara nord-occidantal. Proceedings of International Symposium on Devonian System, 1, Alberta Society of Petroleum Geologists, Calgary, 203–244.

    Google Scholar 

  • House, M. R. (1985). A new approach to an absolute timescale from measurements of orbital cyclicities from measurements of orbital cycles and sedimentary microrhythms. Nature, 316, 721–725.

    Google Scholar 

  • House, M. R. (1986). Are Jurassic sedimentary microrhythms due to orbital forcing? Proceedings of the Ussher Society, 6, 299–311.

    Google Scholar 

  • House, M. R. (1989). Geology of the Dorset coast. Geological Association (168 p.).

    Google Scholar 

  • House, M. R. (1993). Geology of the Dorset coast (2nd ed.) Geologists’ Association Guide No. 22 (164 p. & plates.) Burlington House, London: Piccadilly. Paperback. ISBN 07073 0485 7.

    Google Scholar 

  • House, M. R. (1995). Orbital forcing timescales: An introduction. In M. R. House & A. S. Gale (Eds.), Orbital forcing timescales and cyclostratigraphy. Geological Society Special Publication 85 (pp. 1–18).

    Google Scholar 

  • House, M. R., & Gale, A. S. (Eds.) (1995). Orbital forcing timescales and cyclostratigraphy. Geological Society Special Publication 85 (204 p.)

    Google Scholar 

  • Howarth, M. K. (1955). Domerian of the Yorkshire coast. Proceedings. Yorkshire Geological Society, 30, 147–175.

    Google Scholar 

  • Howard, A. S. (1985). Lithostratigraphy of the Staithes Sandstone and Cleveland Ironstone formations (Lower Jurassic) of north-east Yorkshire. Proceedings of Yorkshire Geological Society, 45, 261–275.

    Google Scholar 

  • Hudson, J. D. (1982). Pyrite in ammonite-bearing shales from the Jurassic of England and Germany. Sedimentology, 29, 639–667.

    Google Scholar 

  • Ito, M. (1992). High-frequency depositional sequences of the upper part of the Kazusa Group, a middle Pleistocene forearc basin fill in Boso Peninsula, Japan. Sedimentary Geology, 76, 155–175.

    Google Scholar 

  • Jennette, D. C., & Pryor, W. A. (1993). Cyclic alternation of proximal and distal storm facies: Kope and fairview formations (Upper Ordovician), Ohio and Kentucky. Journal of Sedimentary Petrology, 63, 183–202.

    Google Scholar 

  • Jansen, U., Becker, G., Plodowski, G., Schindler, E., Vogel, O., & Weddige, K. (2004). The Emsian to Eifelian near Foum Zguid (NE Dra Valley, Morocco). Document Institute Sciences, Rabat, 19, 21–35.

    Google Scholar 

  • Kamataki, T., & Kondo, Y. (1997). 20, 000 or 40, 000-year depositional sequences caused by glacio-eustatic sea-level fluctuation in the middle Pleistocene Jizodo Formation, Boso Peninsula, central Japan. Journal of the Geological Society of Japan, 103, 747–762.

    Google Scholar 

  • Kauffman, E. G. (1978). Benthic environments and paleoecology of the Posidonienschefer (Toarcian). Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen, 157, 18–36.

    Google Scholar 

  • Kauffman, E. G. (1981). Ecological reappraisal of the German Posidonienschefer (Toarcian) and the stagnant basin model. In J. Gray, A. J. Boucot, & W. B. N. Berry (Eds.), Communities of the past. Stroudsburg, PA: Dowden, Hutchinson, and Ross.

    Google Scholar 

  • Kauffman, E. G. (1982). Ecology and depositional environments of chalk-marl and limestone-shale rhythms in the Cretaceous of North America. In G. Ensele & A. Seilacher (Eds.), Cyclic and event stratification. Springer: New York.

    Google Scholar 

  • Kauffman, E. G. (2003). Limestone concretions as near-isochronous surfaces: An example from the Cretaceous of the Western interior of North America. In P. J. Harries (Ed.), High resolution stratigraphic paleontology. The Netherlands: Springer.

    Google Scholar 

  • Kennedy, W. J., & Garrison, R. E. (1975). Morphology and genesis of nodular chalks and hardgrounds in the Upper Cretaceous of southern England. Sedimentology, 22, 311–86.

    Google Scholar 

  • Kidwell, S. M. (1985). Paleobiological and sedimentological implications of skeletal concentrations. Nature, 318, 457–460.

    Google Scholar 

  • Kidwell, S. M. (1986). Models for fossil concentrations: Paleobiologic implications. Paleobiology, 12, 6–24.

    Google Scholar 

  • Kidwell, S. M. (1989). Stratigraphic condensation of marine transgressive records: Origin of major shell deposits in the Miocene of Maryland. Journal of Geology, 97, 1–24.

    Google Scholar 

  • Kidwell, S. M. (1991a). Condensed deposits in siliciclastic sequences: Expected and observed features. In G. Einsele, W. Ricken, & A. Seilacher (Eds.), Cycles and events in stratigraphy (pp. 682–695). Berlin: Springer.

    Google Scholar 

  • Kidwell, S. M. (1991b). The stratigraphy of shell concentrations. In D. E. G. Briggs & P. A. Allison (Eds.), Taphonomy, releasing information from the fossil record (pp. 211–290). New York: Plenum.

    Google Scholar 

  • Kidwell, S. M., & Bosence, D. W. J. (1991). Taphonomy and time-averaging of marine shelly faunas. In P. A. Allison & D. E. G. Briggs (Eds.), Taphonomy, releasing information from the fossil record (pp. 116–211). New York: Plenum.

    Google Scholar 

  • Kidwell, S. M., & Brenchley, P. J. (1994). Patterns in bioclastic accumulation through the Phanerozoic. Geology, 22, 1139–1143.

    Google Scholar 

  • Kidwell, S. M., Brenchley, P. J., & Lipps, J. H. (1996). Evolution of the fossil record: Thickness trends in marine skeletal accumulations and their implications. In D. Jablonski & D. H. Erwin (Eds.), Evolutionary paleobiology (pp. 290–336). Chicago: University of Chicago Press.

    Google Scholar 

  • Kidwell, S. M., & Jablonski, D. (1983). Taphonomic feedback: Ecological consequences of shell accumulation. In P. J. Tevesz & P. J. McCall (Eds.), Biotic interactions in recent and fossil benthic communities (pp. 195–248). New York: Plenum.

    Google Scholar 

  • Kirchner, B., & Brett, C. E. (2008). Subsurface correlation and paleogeography of a mixed siliciclastic-carbonate unit using distinctive faunal horizons: Toward a new methodology. Palaios, 23, 173–184.

    Google Scholar 

  • Kitamura, A., & Kondo, Y. (1990). Cyclic changes of sediments and fossil associations caused by glacio-eustatic sea-level changes during the early Pleistocene – A case study of the middle part of the Omma Formation at the type locality. Journal of the Geological Society of Japan, 96, 19–36.

    Google Scholar 

  • Kitamura, A., Kondo, Y., Sakai, H., & Horii, M. (1994). 41,000–year orbital obliquity expressed as cyclic changes in lithofacies and molluscan content, Early Pleistocene Omma Formation, Central Japan. Palaeogeography Palaeoclimatology Palaeoecology, 112, 345–361.

    Google Scholar 

  • Kondo, Y. (1997). Inferred bivalve response to rapid burial in a Pleistocene shallow-marine deposit from New Zealand. Palaeogeography, Palaeoclimatology, Palaeoecology, 128, 87–100.

    Google Scholar 

  • Kondo, Y., Abbott, S. T., Kitamura, A., Kamp, P. J. J., Naish, T. R., Kamataki, T., et al. (1998). The relationship between shell bed type and sequence architecture; examples from Japan and New Zealand. Sedimentary Geology, 122, 109–127.

    Google Scholar 

  • Krawinkel, H., & Seyfried, H. (1996). Sedimentlogic, paleoecologic, taphonomic and ichnologic criteria for high-resolution sequence analysis: a practical guide for the sequence analysis: A practical guide for the identification. Sedimentary Geology, 102, 79–110.

    Google Scholar 

  • Kreisa, R. D., & Bambach, R. K. (1982). The role of storm processes in generating shell beds in Paleozoic shelf environments. In G. Einsele, & A. Seilacher (Eds.), Cyclic and Event Stratification (pp. 200–207). Springer-Verlag, Berlin.

    Google Scholar 

  • LaFerriere, A., Hattin, D., & Archer, A. W. (1987). Effects of climate, tectonics, and sea-level changes on rhythmic bedding patterns in the Niobrara Formation (Upper Cretaceous), U.S. Western Interior. Geology, 15, 233–236.

    Google Scholar 

  • Landing, E., & Brett, C. E. (1987). Trace fossils and regional significance of a Middle Devonian (Givetian) disconformity in southwestern Ontario. Journal of Paleontology, 61, 205–230.

    Google Scholar 

  • Lang, W. D. (1924). The Blue Lias of the Devon and Dorset coasts. Proceedings of the Geologists’ Association, 35, 169–185.

    Google Scholar 

  • Larson, R. L., & Rhodes, D. C. (1983). The evolution of infaunal communities and sedimentary fabrics. In M. J. S. Tevesz & P. L. McCall (Eds.), Biotic interactions in recent and fossil benthic communities (pp. 627–648). New York: Plenum.

    Google Scholar 

  • Li, X., & Droser, M. L. (1997). Nature and distribution of Cambrian shell concentrations: Evidence from the basin and range province of the western United States (California, Nevada, and Utah). Palaios, 12, 111–126.

    Google Scholar 

  • Lehmann, C., Osleger, D. A., & Montañez, I. (2000). Sequence stratigraphy of lower cretaceous (Barremian-Albian) carbonate platforms of northeastern Mexico: Regional and global correlations. Journal of Sedimentary Research, 70, 373–391.

    Google Scholar 

  • Liddell, W. D., Wright, S. H., & Brett, C. E. (1997). Sequence stratigraphy and paleoecology of the middle Cambrian spence shale in northern Utah and southern Idaho. In P. K. Link & B. J. Kowalis (Eds.), Proterozoic to recent stratigraphy, tectonics, and volcanology, Utah, Nevada, southern Idaho and central Mexico. Brigham Young University, Geology Studies, 42(1) (pp. 59–78).

    Google Scholar 

  • Manguno, M. G., & Droser, M. L. (2004). The ichnologic record of the Ordovician radiation. In B. D. Webby, F. Paris, M. L. Droser, & I. G. Percival (Eds.), The great Ordovician biodiversification event (pp. 369–379). Columbia University Press: New York.

    Google Scholar 

  • Martill, D. M. (1985). The preservation of marine vertebrates in the Lower Oxford Clay (Jurassic) of central England. Philosophical Transactions Royal Society London, Series, B311, 155–165.

    Google Scholar 

  • McIntyre, A. P., & Kamp, P. J. J. (1998). Late Pliocene (2.8–2.4 Ma) cyclothemic shelf deposits, Parikino, Wanganui Basin, New Zealand: lithostratigraphy and correlation of cycles. New Zealand Journal of Geology and Geophysics, 41, 69–84.

    Google Scholar 

  • McKerrow, W. S. (1979). The ecology of fossils. Cambridge: MIT Press. 400 pp.

    Google Scholar 

  • McLaughlin, P. I., & Brett, C. E. (2004). Eustatic and tectonic controls on the distribution of marine seismites: Examples from the Upper Ordovician of Kentucky, USA. Sedimentary Geology, 168, 165–192.

    Google Scholar 

  • McLaughlin, P. I., Brett, C. E., & Wilson, M. A. (2008). Hierarchy of sedimentary surfaces and condensed beds from the middle Paleozoic of eastern North America: Implications for cratonic sequence stratigraphy. In B. R. Pratt, C. Holmden (Eds.), Dynamics of Epeiric Seas. Geological Association of Canada, Special Paper 48 (pp. 175–200).

    Google Scholar 

  • Miall, A. D., & Mohamud, A. (2001). The castlegate sandstone of the book cliffs, Utah: Sequence stratigraphy, paleogeography, and tectonic controls. Journal of Sedimentary Research, Section B: Stratigraphy and Global Studies, 71, 537–548.

    Google Scholar 

  • Miller, A. I., Holland, S. M., Meyer, D. L., & Dattilo, B. F. (2001). The use of faunal gradient analysis for high-resolution correlation and assessment of seafloor topography in the type Cincinnatian. Journal of Geology, 109, 603–613.

    Google Scholar 

  • Mitchell, C. E., & Bergström, S. M. (1991). New graptolite and lithostratigraphic evidence from the Cincinnati region, U.S.A., for the definition and correlation of the base of the Cincinnatian series (Upper Ordovician), In C. R. Barnes & S. H. Williams (Eds.). Advances in Ordovician Geology. Geological Survey, Canada Paper (pp. 90–9, 59–77).

    Google Scholar 

  • Moghadam, H. V., & Paul, C. R. C. (2000). Trace fossils of the Jurassic, Blue Lias, Lyme Regis, southern England. Ichnos, 7, 283–306.

    Google Scholar 

  • Morzadec, H. (1980). Les Trilobites Asteropyginae du Devonien de l’Anti-Atlas. Palaeontographica Abteilung A, 262, 53–85.

    Google Scholar 

  • Naish, T. R., & Kamp, P. J. J. (1997). High-resolution sequence stratigraphy of 6th order (41 ka) Plio-Pleistocene cyclothems, Wanganui Basin, New Zealand. Bulletin of the Geological Society of America, 109, 978–999.

    Google Scholar 

  • Oloriz, F., Reolid, M., & Rodriguez-Tovar, F. J. (2002). Fossil assemblages, lithofacies, taphofacies and interpreting depositional dynamics in the epicontinental Oxfordian of the Prebetic Zone, Betic Cordillera, southern Spain. Palaeogeography Palaeoclimatology Palaeoecology, 185, 53–75.

    Google Scholar 

  • Oschmann, W. (1988). Kimmeridge Clay sedimentation—a new cyclic model. Palaeogeography, Palaeoclimatology, Palaeoecology, 65, 217–251.

    Google Scholar 

  • Palmer, T. J., & Wilson, M. A. (2004). Calcite precipitation and dissolution of biogenic aragonite in shallow Ordovician calcite seas. Lethaia, 37, 417–427.

    Google Scholar 

  • Parras, A., & Casadio, S. (2005). Taphonomy and sequence stratigraphic significance of oyster-dominated concentrations from the San Julian formation, Oligocene of Patagonia, Argentina. Palaeogeography Palaeoclimatology Palaeoecology, 217, 47–66.

    Google Scholar 

  • Pattison, S. A. J. (1995). Sequence stratigraphic significance of sharp-based lowstand shoreface deposits, Kenilworth Member, Book Cliffs, Utah. American Association Petroleum Geologists Bulletin, 79, 444–462.

    Google Scholar 

  • Paul, C. R. C., Allison, P. A., & Brett, C. E. (2008). The occurrence and preservation of ammonites in the Blue Lias Formation (Lower Jurassic) of Devon and Dorset, England and their palaeoecological, sedimentological, diagenetic significance. Palaeogeography Palaeoclimatology Palaeoecology, 270, 258–272.

    Google Scholar 

  • Plint, A. G., & Nummedal, D. (2000). The falling stage systems tract: Recognition and importance in sequence stratigraphic analysis. In D. Hunt & R. Gawthorpe (Eds.), Sedimentary responses to forced regressions. Geological Society of London, Special Publications 172 (pp. 1–17).

    Google Scholar 

  • Ramsköld, L., & Werdelin, L. (1991). The phylogeny and evolution of some phacopid trilobites. Cladistics, 7, 29–74.

    Google Scholar 

  • Rawson, P. F., & Wright, J. K. (1995). Jurassic of the Cleveland Basin, North Yorkshire. In P. D. Taylor (Ed.), Field geology of the British Jurassic. Geological Society, London (pp. 173–208).

    Google Scholar 

  • Rees, M. (1986). A fault-controlled trough through a carbonate platform: The Middle Cambrian House Range embayment. Geological Society of America Bulletin, 97, 1057–1069.

    Google Scholar 

  • Ricken, W. (1991). Variation in sedimentation rates in rhythmically bedded sediments – Distinction between depositional types. In G. Einsele, W. Ricken, & A. Seilacher (Eds.), Cycles and events in stratigraphy (pp. 167–187). Berlin: Springer.

    Google Scholar 

  • Ricken, W. (1994). Complex rhythmic sedimentation related to third-order sea-level variations: Upper Cretaceous, Western Interior Basin, USA. In P. L. deBoer & D. G. Smith (Eds.), Orbital forcing and cyclic sequences. International association of sedimentology special publication 19 (pp. 167–193). Oxford: Blackwell.

    Google Scholar 

  • Rio, D., Channell, J. E. T., Masserei, F., Poli, M. S., Sgavetti, M., D’Alessandro, A., et al. (1996). Reading Pleistocene eustasy in a tectonically active shelf setting (Crotone Peninsula, southern Italy). Geology, 24, 743–746.

    Google Scholar 

  • Sadler, D. H., & Cooper, R. A. (2004). Calibration of the Ordovician timescale. In B. D. Webby, F. Paris, M. L. Droser, & I. G. Percival (Eds.), The great Ordovician biodiversification event (pp. 48–51). New York: Columbia University Press.

    Google Scholar 

  • Sageman, B. B. (1996). Lowstand tempestites: Depositional model for Cretaceous skeletal limestones. Geology, 24, 888–892.

    Google Scholar 

  • Sageman, B. B., Rich, J., Arthur, M. A., Burchfield, D. E., & Dean, W. E. (1997). Evidence for Milankovitch periodicities in the Cenomanian-Turonian lithologic and geochemical cycles, Western Interior, US. Journal of Sedimentary Research, 67, 285–301.

    Google Scholar 

  • Sageman, B. B., Rich, J., Arthur, M. A., Dean, W. E., Savrda, C. E., & Bralower, T. J. (1998). Multiple Milankovitch cycles in the Bridge Creek Limestone (Cenomanian-Turonian), Western Interior Basin. Stratigraphy and Paleoenvironments of the Cretaceous Western Interior Seaway, USA SEPM Concepts in Sedimentology and Paleontology 6 (pp. 153–171).

    Google Scholar 

  • Sakakura, N. (2002). Taphonomy of the bivalve assemblages in the upper part of the Paleogene Ashiya Group, southwestern Japan. Paleontological Research, 6, 101–120.

    Google Scholar 

  • Savrda, C., & Bottjer, D. J. (1991). Oxygen-related biofacies in marine strata: An overview and update. In R. V. Tyson & T. H. Pearson (Eds.), Modern and ancient shelf anoxia. Geological Society of London Special Publication 26 (pp. 371–399).

    Google Scholar 

  • Savrda, C., & Bottjer, D. J. (1994). Ichnofossils and ichnofabrics in rhythmically bedded pelagic/hemipelagic carbonates: Recognition and evaluation of benthic redox and scour cycles. In P. L. deBoer & D. G. Smith (Eds.), Orbital forcing and cyclic sequences. International association of sedimentology special publication 19 (pp. 219–225). Oxford: Blackwell.

    Google Scholar 

  • Scarponi, D., & Kowalewski, M. (2004). Stratigraphic paleoecology: Bathymetric signatures and sequence overprint of mollusk associations from late Quaternary sequences of the Po Plain, Italy. Geology, 32, 989–992.

    Google Scholar 

  • Schraut, G. (2000). Trilobiten aus dem Unterdevon des südöstlichen Anti-atlas, Süd Morokko. Senckenbergiana Lethaea, 7, 361–433.

    Google Scholar 

  • Schwarzacher, W., & Fischer, A. G. (1982). Limestone-shale bedding and perturbations of the earth’s orbit. In G. Einsele, W. Ricken, & A. Seilacher (Eds.), Cyclic and event stratification (pp. 72–95). Berlin: Springer.

    Google Scholar 

  • Seilacher, A. (1973). Biostratinomy. The sedimentology of biologically standardized particles. In R. N. Ginsberg (Ed.), Evolving concepts in sedimentology (pp. 159–177). Baltimore, MD: The Johns Hopkins University Press.

    Google Scholar 

  • Seilacher, A. (1982a). General remarks about event deposits. In G. Einsele, W. Ricken, & A. Seilacher (Eds.), Cyclic and event stratification. Berlin: Springer.

    Google Scholar 

  • Seilacher, A. (1982b). Ammonite shells as habitats in the Posidonia Shales of Holzmaden: Floats or benthic islands. Neues Jahrbuch fur Geologie und Palaeontologie Monatshefte, 1982, 98–114.

    Google Scholar 

  • Seilacher, A. (1985). The Jeram model: Event condensation in a modern intertidal environment. In U. Bayer & A. Seilacher (Eds.), Sedimentary and evolutionary cycles. Lecture notes in earth sciences (pp. 336–342). Berlin: Springer.

    Google Scholar 

  • Seilacher, A. (2007). Trace fossil analysis. New York: Springer. 226 p.

    Google Scholar 

  • Seilacher, A., & Hauff, R. B. (2004). Constructional morphology of pelagic crinoids. Palaios, 19, 3–16.

    Google Scholar 

  • Seilacher, A., & Meischner, D. (1964). Fazies analyse im Paläozoikum des Oslo-Gebietes. Geologische Rundschau, 54, 596–619.

    Google Scholar 

  • Sellwood, B. W., & Jenkyns, H. C. (1975). Basins and swells and the evolution of an epeiric sea (Pliensbachian – Bajocian of Great Britain). Journal of the Geological Society of London, 131, 373–388.

    Google Scholar 

  • Sepkoski, J. (1984). A kenetic-model of Phanerozoic taxonomic diversity: III Post-Paleozoic families and mass extinctions. Paleobiology, 10, 246–267.

    Google Scholar 

  • Sepkoski, J. (1997). Biodiversity: Past, present, and future. Journal of Paleontology, 71, 533–539.

    Google Scholar 

  • Shepard, T. H., Houghton, R. D., & Swan, A. R. H. (2006). Bedding and pseudo-bedding in the Early Jurassic of Glamorgan: Deposition and diagenesis in the Blue Lias of South Wales. Proceedings of the Geologists’ Association, 117, 249–264.

    Google Scholar 

  • Simoes, M. G., Anelli, L. E., Kowalewski, M., & Torello, F. (1998). Long-term time-averaging despite abrupt burial: Paleozoic obrution deposits from epeiric sea settings of the Parana Basin. Geological Society of America, Abstracts with Programs, 30(7), 384.

    Google Scholar 

  • Simms, M. J., Chidlaw, N., Morton, N., & Page, K. N. (2004). British lower Jurassic stratigraphy. Geological conservation review series No. 30. Peterborough: Joint Nature Conservation Committee.

    Google Scholar 

  • Smith, D. (1989). Stratigraphic correlation of presumed Milankovitch cycles in the Blue Lias (Hettangian to earliest Sinemurian). England Terra Nova, 1(5), 457–460.

    Google Scholar 

  • Speyer, S. E., & Brett, C. E. (1985). Clustered trilobite assemblages in the Middle Devonian Hamilton Group. Lethaia, 18, 85–103.

    Google Scholar 

  • Speyer, S. E., & Brett, C. E. (1986). Trilobite taphonomy and Middle Devonian taphofacies. Palaios, 1, 312–327.

    Google Scholar 

  • Speyer, S. E., & Brett, C. E. (1988). Taphofacies models for epeiric sea environments: Middle Paleozoic examples. Palaeogeography Palaeoclimatology Palaeoecology, 63, 225–262.

    Google Scholar 

  • Stanley, S. M., & Hardie, L. A. (1998). Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeography Palaeoclimatology Palaeoecology, 144, 3–19.

    Google Scholar 

  • Stanley, S. M., & Hardie, L. A. (1999). Hypercalcification; paleontology links plate tectonics and geochemistry to sedimentology. GSA Today, 9, 1–7.

    Google Scholar 

  • Thayer, C. W. (1985). Sediment-mediated disturbance and the evolution of marine benthos. In M. J. S. Tevesz & P. L. McCall (Eds.), Biotic interactions in recent and fossil benthic communities (pp. 480–626). New York: Plenium.

    Google Scholar 

  • Tobin, R. C., & Pryor, W. A. (1981). Sedimentological interpretation of an Upper Ordovician carbonate-shale vertical sequence in northern Kentucky. In T. G. Roberts (Ed.), Geological society of America Cincinnati ’81, Field trip guidebooks, v.1, stratigraphy, sedimentology (pp. 49–57). Falls Church, Virginia, American Geological Institute.

    Google Scholar 

  • Tomasovych, A., Fürsich, F. T., & Olszewski, T. D. (2006). Modelling shelliness and alteration in shell beds: variation in hardpart input and burial rates leads to opposing predictions. Paleobiology, 32, 278–298.

    Google Scholar 

  • Tsujita, C. J. (1995). Origin of concretion-hosted shell clusters in the Late Cretaceous Bearpaw Formation, southern Alberta, Canada. Palaios, 10, 408–423.

    Google Scholar 

  • Vail, P. R. (1987). Seismic stratigraphy interpretation using sequence stratigraphy, Part 1. Sequence stratigraphy interpretation procedure. In W. Bally (Ed.), Atlas of seismic stratigraphy, American Association Petroleum Geologists Studies in Geology 27 (pp. 1–10).

    Google Scholar 

  • Vail, P. R., Audemard, F. E., Eisner, P. N., & Perez-Cruz, C. (1991). The stratigraphic signatures of tectonics, eustasy and sedimentology: An overview. In S. A. Bowman, G. Einsele, W. Ricken, & A. Seilacher (Eds.), Cycles and events in stratigraphy (pp. 617–659). Berlin: Springer.

    Google Scholar 

  • Van Houten, F. B., & Bhattacharrya, D. P. (1982). Phanerozoic oolitic ironstones – geologic record and facies model. Annual Review of Earth and Planetary Sciences, 10, 441–457.

    Google Scholar 

  • Van Wagoner, J. C., & Bertram, G. T. (1995). Sequence stratigraphy and marine to nonmarine facies architecture of foreland basin strata, Book Cliffs, Utah, U.S.A. In J. C. Van Wagoner & G.T. Bertram (Eds.), Sequence stratigraphy of foreland basin deposits. American Association Petroleum Geologists Memoir 64 (pp. 137 – 223).

    Google Scholar 

  • Walker, K. R., & Alberstadt, L. P. (1975). Ecological succession as an aspect of structure in fossil communities. Paleobiology, 1, 238–257.

    Google Scholar 

  • Webber, A. (2002). High-resolution faunal gradient analysis and assessment of the causes of meter-scale cyclicity in the Type Cincinnatian series (Upper Ordovician). Palaios, 17, 545–555.

    Google Scholar 

  • Weedon, G. P. (1985). Hemipelagic shelf sedimentation and climatic cycles: The basal Jurassic (Blue Lias) of South Britain. Earth and Planetary Science Letters, 76, 321–335.

    Google Scholar 

  • Weedon, G. P. (1986). Comment on “Origin of cycles, climatically induced or diagenetic?” by Hallam, A. Geology, 15, 92–94.

    Google Scholar 

  • Weedon, G. P., Jenkyns, H. C., Coe, A. L., & Hesselbo, S. P. (1999). Astronomical calibration of the Jurassic time-scale from cyclostratigraphy in British mudrock formations. Philosophical Transactions of the Royal Society London Series, A357, 1787–1813.

    Google Scholar 

  • Wells, M. R., Allison, P. A., Piggott, M. D., Gorman, G. J., Hampson, G. J., Pain, C. C., et al. (2007). Numerical modelling of tides in the Late Pennsylvanian Midcontinent Seaway of North America with implications for hydrography and sedimentation. Journal of Sedimentary Research, 77, 943–865.

    Google Scholar 

  • West, I. M. (2007a). Staithes, middle Jurassic – geological field guide, Appendix to geology of the Wessex coast. Internet site: http:\\www.soton.ac.uk/∼imw/staithes.htm. National Oceanography Centre, Southampton University. Version: 4th November 2007.

  • West, I. M. (2007b). Lyme Regis, West – Blue Lias: Geology of the Wessex Coast. National Oceanography Centre, Southampton, Southampton University. Internet geological field guide. http://www.soton.ac.uk/∼imw/lyme.htm. Version: 27 January 2007

  • Whitehead, T. H., Anderson, W., Wilson, V., & Wray, D. A. (1952). The Liassic ironstones. The mesozoic ironstones of England. Memoirs of the geological survey of Great Britain, Department of Scientific and Industrial Research, Her Majesty’s Stationery Office, 211 pp. With contributions on petrography by Dunham, K. C. See Chapter 2: Petrography of the Liassic ironstones, pp. 16–31, and Chapter 3: Liassic iron ores of the Cleveland District (pp 35–67).

    Google Scholar 

  • Wignall, P. B. (1993). Distinguishing between oxygen and substrate control in fossil benthic assemblages. Journal of Geological Society, 150, 193–196.

    Google Scholar 

  • Wilson, M. A., & Palmer, T. J. (1992). Hardgrounds and hardground faunas. University of Wales, Aberystwyth, Institute of Earth Studies Publications, 9, 1–131.

    Google Scholar 

  • Ziegler, A. M. (1965). Silurian marine communities and their environmental significance. Nature, 207, 270–272.

    Google Scholar 

  • Ziegler, A. M., Cocks, R. M., & Bambach, R. K. (1968). The composition and structure of Lower Silurian marine communities. Lethaia, 1, 1–27.

    Google Scholar 

Download references

Acknowledgements

This project is an outgrowth of cooperative research between PAA and CB, initially funded by grants from NATO and the Royal Society. CB expresses appreciation to the Donors to the Petroleum Research Fund, American Chemical Society, NSF Grants EAR 0518511 (to W. Huff and C. Brett); and the National Geographic Society for supporting research on the Devonian of Morocco. We have benefited from hours of discussion of ideas with many colleagues and students, but especially Gordon Baird, Alex Bartholomew, Sean Cornell, Patrick McLaughlin, David Meyer, Arnie Miller, Cam Tsujita. AJWH acknowledges funding from the American Museum of Natural History Lerner-Gray Fund, Geological Society of America, Palaeontological Society, the American Association of Petroleum Geologists, and the Department of Geology, University of Cincinnati.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlton E. Brett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Brett, C.E., Allison, P.A., Hendy, A.J.W. (2011). Comparative Taphonomy and Sedimentology of Small-Scale Mixed Carbonate/Siliciclastic Cycles: Synopsis of Phanerozoic Examples. In: Allison, P.A., Bottjer, D.J. (eds) Taphonomy. Aims & Scope Topics in Geobiology Book Series, vol 32. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8643-3_4

Download citation

Publish with us

Policies and ethics