Skip to main content

ω-3 PUFAs and Other Cancers

  • Chapter
  • First Online:
Book cover Dietary Omega-3 Polyunsaturated Fatty Acids and Cancer

Part of the book series: Diet and Cancer ((DICA,volume 1))

  • 1271 Accesses

Abstract

ω-3 Polyunsaturated fatty acids (ω-3 PUFAs)-rich fish oil is thought to suppress the pathogenesis of several human diseases including cancer. Although systemic reviews of epidemiological and cohort studies on cancer prevention of fish oil have provided controversial results, many preclinical studies convincingly demonstrate preventive and therapeutic efficacies of ω-3 PUFAs on cancer growth, angiogenesis, and metastasis through diverse mechanisms. This chapter summarizes the mechanisms of anticancer action of ω-3 PUFAs in pancreatic cancer, lung cancer, skin cancer, cholangiocarcinoma, and leukemia. By understanding these mechanisms we will be able to recommend the utilization of ω-3 PUFAs, alone or in combination with standard anticancer drugs, as an effective and safe therapeutic approach for the chemoprevention and treatment of these human cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin 2009; 59(4):225–49.

    Article  PubMed  Google Scholar 

  2. Hochster HS, Haller DG, de Gramont A, et al. Consensus report of the international society of gastrointestinal oncology on therapeutic progress in advanced pancreatic cancer. Cancer 2006; 107(4):676–85.

    Article  CAS  PubMed  Google Scholar 

  3. Chen YQ, Berquin IM, Daniel LW, et al. Omega-3 fatty acids and cancer risk. JAMA 2006; 296(3):282; author reply.

    Article  CAS  PubMed  Google Scholar 

  4. MacLean CH, Newberry SJ, Mojica WA, et al. Effects of omega-3 fatty acids on cancer risk: A systematic review. JAMA 2006; 295(4):403–15.

    Article  CAS  PubMed  Google Scholar 

  5. Granados S, Quiles JL, Gil A, Ramirez-Tortosa MC. Dietary lipids and cancer. Nutr Hosp 2006; 21(Suppl 2):42–52, 44–54.

    CAS  PubMed  Google Scholar 

  6. Simopoulos AP. Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: Nutritional implications for chronic diseases. Biomed Pharmacother 2006; 60(9):502–7.

    Article  CAS  PubMed  Google Scholar 

  7. Mozaffarian D, Rimm EB. Fish intake, contaminants, and human health: evaluating the risks and the benefits. JAMA 2006; 296(15):1885–99.

    Article  CAS  PubMed  Google Scholar 

  8. Gregor JI, Heukamp I, Kilian M, et al. Does enteral nutrition of dietary polyunsaturated fatty acids promote oxidative stress and tumor growth in ductal pancreatic cancer? Experimental trial in Syrian Hamster. Prostaglandins Leukot Essent Fatty Acids 2006; 74(1):67–74.

    Article  CAS  PubMed  Google Scholar 

  9. Heukamp I, Gregor JI, Kilian M, et al. Influence of different dietary fat intake on liver metastasis and hepatic lipid peroxidation in BOP-induced pancreatic cancer in Syrian hamsters. Pancreatology 2006; 6(1–2):96–102.

    Article  CAS  PubMed  Google Scholar 

  10. O’Connor TP, Roebuck BD, Peterson F, Campbell TC. Effect of dietary intake of fish oil and fish protein on the development of L-azaserine-induced preneoplastic lesions in the rat pancreas. J Natl Cancer Inst 1985; 75(5):959–62.

    PubMed  Google Scholar 

  11. O’Connor TP, Roebuck BD, Peterson FJ, Lokesh B, Kinsella JE, Campbell TC. Effect of dietary omega-3 and omega-6 fatty acids on development of azaserine-induced preneoplastic lesions in rat pancreas. J Natl Cancer Inst 1989; 81(11):858–63.

    Article  PubMed  Google Scholar 

  12. Cave WT, Jr. Omega 3 fatty acid diet effects on tumorigenesis in experimental animals. World Rev Nutr Diet 1991; 66:462–76.

    CAS  PubMed  Google Scholar 

  13. Barber MD, Ross JA, Voss AC, Tisdale MJ, Fearon KC. The effect of an oral nutritional supplement enriched with fish oil on weight-loss in patients with pancreatic cancer. Br J Cancer 1999; 81(1):80–6.

    Article  CAS  PubMed  Google Scholar 

  14. Barber MD, Fearon KC. Tolerance and incorporation of a high-dose eicosapentaenoic acid diester emulsion by patients with pancreatic cancer cachexia. Lipids 2001; 36(4):347–51.

    Article  CAS  PubMed  Google Scholar 

  15. Merendino N, Loppi B, D‘Aquino M, et al. Docosahexaenoic acid induces apoptosis in the human PaCa-44 pancreatic cancer cell line by active reduced glutathione extrusion and lipid peroxidation. Nutr Cancer 2005; 52(2):225–33.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang W, Long Y, Zhang J, Wang C. Modulatory effects of EPA and DHA on proliferation and apoptosis of pancreatic cancer cells. J Huazhong Univ Sci Technolog Med Sci 2007; 27(5):547–50.

    Article  PubMed  CAS  Google Scholar 

  17. Swamy MV, Citineni B, Patlolla JM, Mohammed A, Zhang Y, Rao CV. Prevention and treatment of pancreatic cancer by curcumin in combination with omega-3 fatty acids. Nutr Cancer 2008; 60(Suppl 1):81–9.

    Article  CAS  PubMed  Google Scholar 

  18. Baumgartner M, Sturlan S, Roth E, Wessner B, Bachleitner-Hofmann T. Enhancement of arsenic trioxide-mediated apoptosis using docosahexaenoic acid in arsenic trioxide-resistant solid tumor cells. Int J Cancer 2004; 112(4):707–12.

    Article  CAS  PubMed  Google Scholar 

  19. Song KS Yun EJ, Kim JS, Heo JY, et al. Docosahexaenoic acid-induced apoptotic cell death is correlated with inhibition of β-catenin/wnt signaling pathway and Cox-2 in human pancreatic cancer cells. In the 99th Annual Meeting of the American Association Cancer Research 2008; Abstract # 2705.

    Google Scholar 

  20. Barber MD, Fearon KC, Tisdale MJ, McMillan DC, Ross JA. Effect of a fish oil-enriched nutritional supplement on metabolic mediators in patients with pancreatic cancer cachexia. Nutr Cancer 2001; 40(2):118–24.

    Article  CAS  PubMed  Google Scholar 

  21. Moses AW, Slater C, Preston T, Barber MD, Fearon KC. Reduced total energy expenditure and physical activity in cachectic patients with pancreatic cancer can be modulated by an energy and protein dense oral supplement enriched with n-3 fatty acids. Br J Cancer 2004; 90(5):996–1002.

    Article  CAS  PubMed  Google Scholar 

  22. Nowak J, Weylandt KH, Habbel P, et al. Colitis-associated colon tumorigenesis is suppressed in transgenic mice rich in endogenous n-3 fatty acids. Carcinogenesis 2007; 28(9):1991–5.

    Article  CAS  PubMed  Google Scholar 

  23. Jia Q, Lupton JR, Smith R, et al. Reduced colitis-associated colon cancer in Fat-1 (n-3 fatty acid desaturase) transgenic mice. Cancer Res 2008; 68(10):3985–91.

    Article  CAS  PubMed  Google Scholar 

  24. Xia S, Lu Y, Wang J, et al. Melanoma growth is reduced in fat-1 transgenic mice: Impact of omega-6/omega-3 essential fatty acids. Proc Natl Acad Sci USA 2006; 103(33):12499–504.

    Article  CAS  PubMed  Google Scholar 

  25. Kang JX, Wang J, Wu L, Kang ZB. Transgenic mice: Fat-1 mice convert n-6 to n-3 fatty acids. Nature 2004; 427(6974):504.

    Article  CAS  PubMed  Google Scholar 

  26. Song KS, Kim JS, Yun EJ, Park HD, et al. Anti-angiogenic effect of w3-polyunsaturated fatty acids is mediated through suppression of ELR+ CXC chemokines expression and VEGF signaling in pancreatic cancer. In the 100th Annual Meeting of the American Association Cancer Research 2009: Abstract # 131.

    Google Scholar 

  27. Eibl G, Bruemmer D, Okada Y, et al. PGE(2) is generated by specific COX-2 activity and increases VEGF production in COX-2-expressing human pancreatic cancer cells. Biochem Biophys Res Commun 2003; 306(4):887–97.

    Article  CAS  PubMed  Google Scholar 

  28. Funahashi H, Satake M, Hasan S, et al. Opposing effects of n-6 and n-3 polyunsaturated fatty acids on pancreatic cancer growth. Pancreas 2008; 36(4):353–62.

    Article  CAS  PubMed  Google Scholar 

  29. Abedin M, Lim J, Tang TB, Park D, Demer LL, Tintut Y. N-3 fatty acids inhibit vascular calcification via the p38-mitogen-activated protein kinase and peroxisome proliferator-activated receptor-gamma pathways. Circ Res 2006; 98(6):727–9.

    Article  CAS  PubMed  Google Scholar 

  30. Sun H, Berquin IM, Edwards IJ. Omega-3 polyunsaturated fatty acids regulate syndecan-1 expression in human breast cancer cells. Cancer Res 2005; 65(10):4442–7.

    Article  CAS  PubMed  Google Scholar 

  31. Xu HE, Lambert MH, Montana VG, et al. Molecular recognition of fatty acids by peroxisome proliferator-activated receptors. Mol Cell 1999; 3(3):397–403.

    Article  CAS  PubMed  Google Scholar 

  32. Eibl G, Wente MN, Reber HA, Hines OJ. Peroxisome proliferator-activated receptor gamma induces pancreatic cancer cell apoptosis. Biochem Biophys Res Commun 2001; 287(2):522–9.

    Article  CAS  PubMed  Google Scholar 

  33. Yang P, Chan D, Felix E, et al. Formation and antiproliferative effect of prostaglandin E(3) from eicosapentaenoic acid in human lung cancer cells. J Lipid Res 2004; 45(6):1030–9.

    Article  CAS  PubMed  Google Scholar 

  34. Fujino H, Regan JW. EP(4) prostanoid receptor coupling to a pertussis toxin-sensitive inhibitory G protein. Mol Pharmacol 2006; 69(1):5–10.

    CAS  PubMed  Google Scholar 

  35. Kato T, Hancock RL, Mohammadpour H, et al. Influence of omega-3 fatty acids on the growth of human colon carcinoma in nude mice. Cancer Lett 2002; 187(1–2):169–77.

    Article  CAS  PubMed  Google Scholar 

  36. Kelavkar UP, Hutzley J, Dhir R, Kim P, Allen KG, McHugh K. Prostate tumor growth and recurrence can be modulated by the omega-6: Omega-3 ratio in diet: Athymic mouse xenograft model simulating radical prostatectomy. Neoplasia 2006; 8(2):112–24.

    Article  CAS  PubMed  Google Scholar 

  37. Kobayashi N, Barnard RJ, Henning SM, et al. Effect of altering dietary omega-6/omega-3 fatty acid ratios on prostate cancer membrane composition, cyclooxygenase-2, and prostaglandin E2. Clin Cancer Res 2006; 12(15):4662–70.

    Article  CAS  PubMed  Google Scholar 

  38. Reddy BS, Patlolla JM, Simi B, Wang SH, Rao CV. Prevention of colon cancer by low doses of celecoxib, a cyclooxygenase inhibitor, administered in diet rich in omega-3 polyunsaturated fatty acids. Cancer Res 2005; 65(17):8022–7.

    CAS  PubMed  Google Scholar 

  39. Wu M, Harvey KA, Ruzmetov N, et al. Omega-3 polyunsaturated fatty acids attenuate breast cancer growth through activation of a neutral sphingomyelinase-mediated pathway. Int J Cancer 2005; 117(3):340–8.

    Article  CAS  PubMed  Google Scholar 

  40. Yee LD, Young DC, Rosol TJ, Vanbuskirk AM, Clinton SK. Dietary (n-3) polyunsaturated fatty acids inhibit HER-2/neu-induced breast cancer in mice independently of the PPARgamma ligand rosiglitazone. J Nutr 2005; 135(5):983–8.

    CAS  PubMed  Google Scholar 

  41. Calviello G, Di Nicuolo F, Gragnoli S, et al. n-3 PUFAs reduce VEGF expression in human colon cancer cells modulating the COX-2/PGE2 induced ERK-1 and -2 and HIF-1alpha induction pathway. Carcinogenesis 2004; 25(12):2303–10.

    Article  CAS  PubMed  Google Scholar 

  42. Horia E, Watkins BA. Complementary actions of docosahexaenoic acid and genistein on COX-2, PGE2 and invasiveness in MDA-MB-231 breast cancer cells. Carcinogenesis 2007; 28(4):809–15.

    Article  CAS  PubMed  Google Scholar 

  43. Shirota T, Haji S, Yamasaki M, et al. Apoptosis in human pancreatic cancer cells induced by eicosapentaenoic acid. Nutrition 2005; 21(10):1010–7.

    Article  CAS  PubMed  Google Scholar 

  44. Xia SH, Wang J, Kang JX. Decreased n-6/n-3 fatty acid ratio reduces the invasive potential of human lung cancer cells by downregulation of cell adhesion/invasion-related genes. Carcinogenesis 2005; 26(4):779–84.

    Article  CAS  PubMed  Google Scholar 

  45. Zeng G, Germinaro M, Micsenyi A, et al. Aberrant Wnt/beta-catenin signaling in pancreatic adenocarcinoma. Neoplasia 2006; 8(4):279–89.

    Article  CAS  PubMed  Google Scholar 

  46. Calviello G, Resci F, Serini S, et al. Docosahexaenoic acid induces proteasome-dependent degradation of beta-catenin, down-regulation of survivin and apoptosis in human colorectal cancer cells not expressing COX-2. Carcinogenesis 2007; 28(6):1202–9.

    Article  CAS  PubMed  Google Scholar 

  47. Lim K, Han C, Xu L, Isse K, Demetris AJ, Wu T. Cyclooxygenase-2-derived prostaglandin E2 activates beta-catenin in human cholangiocarcinoma cells: evidence for inhibition of these signaling pathways by omega-3 polyunsaturated fatty acids. Cancer Res 2008; 68(2):553–60.

    Article  CAS  PubMed  Google Scholar 

  48. Lai PB, Ross JA, Fearon KC, Anderson JD, Carter DC. Cell cycle arrest and induction of apoptosis in pancreatic cancer cells exposed to eicosapentaenoic acid in vitro. Br J Cancer 1996; 74(9):1375–83.

    Article  CAS  PubMed  Google Scholar 

  49. Jordan A, Stein J. Modulation of epidermal growth factor-induced cell proliferation by an omega-3 fatty-acid-containing lipid emulsion on human pancreatic cancer cell line Mia Paca-2. Nutrition 2001; 17(6):474–5.

    Article  CAS  PubMed  Google Scholar 

  50. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000; 407(6801):249–57.

    Article  CAS  PubMed  Google Scholar 

  51. Hardman WE. (n-3) Fatty acids and cancer therapy. J Nutr 2004; 134(12 Suppl):3427S–30S.

    CAS  PubMed  Google Scholar 

  52. Rose DP, Connolly JM. Antiangiogenicity of docosahexaenoic acid and its role in the suppression of breast cancer cell growth in nude mice. Int J Oncol 1999; 15(5):1011–5.

    CAS  PubMed  Google Scholar 

  53. Mukutmoni-Norris M, Hubbard NE, Erickson KL. Modulation of murine mammary tumor vasculature by dietary n-3 fatty acids in fish oil. Cancer Lett 2000; 150(1):101–9.

    Article  CAS  PubMed  Google Scholar 

  54. Wen B, Deutsch E, Opolon P, et al. n-3 polyunsaturated fatty acids decrease mucosal/ epidermal reactions and enhance antitumour effect of ionising radiation with inhibition of tumor angiogenesis. Br J Cancer 2003; 89(6):1102–7.

    Article  CAS  PubMed  Google Scholar 

  55. Hardman WE, Sun L, Short N, Cameron IL. Dietary omega-3 fatty acids and ionizing irradiation on human breast cancer xenograft growth and angiogenesis. Cancer Cell Int 2005; 5(1):12.

    Article  PubMed  CAS  Google Scholar 

  56. Sheehan KM, O’Connell F, O’Grady A, et al. The relationship between cyclooxygenase-2 expression and characteristics of malignant transformation in human colorectal adenomas. Eur J Gastroenterol Hepatol 2004; 16(6):619–25.

    Article  CAS  PubMed  Google Scholar 

  57. Szymczak M, Murray M, Petrovic N. Modulation of angiogenesis by omega-3 polyunsaturated fatty acids is mediated by cyclooxygenases. Blood 2008; 111(7):3514–21.

    Article  CAS  PubMed  Google Scholar 

  58. Mannini A, Kerstin N, Calorini L, Mugnai G, Ruggieri S. An enhanced apoptosis and a reduced angiogenesis are associated with the inhibition of lung colonization in animals fed an n-3 polyunsaturated fatty acid-rich diet injected with a highly metastatic murine melanoma line. Br J Nutr 2009; 101(5):688–93.

    Article  CAS  PubMed  Google Scholar 

  59. Risau W. Mechanisms of angiogenesis. Nature 1997; 386(6626):671–4.

    Article  CAS  PubMed  Google Scholar 

  60. Donovan EA, Kummar S. Targeting VEGF in cancer therapy. Curr Probl Cancer 2006; 30(1):7–32.

    Article  PubMed  Google Scholar 

  61. Ikeda N, Adachi M, Taki T, et al. Prognostic significance of angiogenesis in human pancreatic cancer. Br J Cancer 1999; 79(9–10):1553–63.

    Article  CAS  PubMed  Google Scholar 

  62. Suzuki I, Iigo M, Ishikawa C, et al. Inhibitory effects of oleic and docosahexaenoic acids on lung metastasis by colon-carcinoma-26 cells are associated with reduced matrix metalloproteinase-2 and -9 activities. Int J Cancer 1997; 73(4):607–12.

    Article  CAS  PubMed  Google Scholar 

  63. Simopoulos AP. Omega-3 fatty acids in inflammation and autoimmune diseases. J Am Coll Nutr 2002; 21(6):495–505.

    CAS  PubMed  Google Scholar 

  64. Noguchi M, Earashi M, Minami M, Kinoshita K, Miyazaki I. Effects of eicosapentaenoic and docosahexaenoic acid on cell growth and prostaglandin E and leukotriene B production by a human breast cancer cell line (MDA-MB-231). Oncology 1995; 52(6):458–64.

    Article  CAS  PubMed  Google Scholar 

  65. Blackwell TS, Christman JW. The role of nuclear factor-kappa B in cytokine gene regulation. Am J Respir Cell Mol Biol 1997; 17(1):3–9.

    CAS  PubMed  Google Scholar 

  66. Yoshimura R, Sano H, Masuda C, et al. Expression of cyclooxygenase-2 in prostate carcinoma. Cancer 2000; 89(3):589–96.

    Article  CAS  PubMed  Google Scholar 

  67. Schley PD, Jijon HB, Robinson LE, Field CJ. Mechanisms of omega-3 fatty acid-induced growth inhibition in MDA-MB-231 human breast cancer cells. Breast Cancer Res Treat 2005; 92(2):187–95.

    Article  CAS  PubMed  Google Scholar 

  68. Hering J, Garrean S, Dekoj TR, et al. Inhibition of proliferation by omega-3 fatty acids in chemoresistant pancreatic cancer cells. Ann Surg Oncol 2007; 14(12):3620–8.

    Article  PubMed  Google Scholar 

  69. Persaud R. Inhibition of proliferation to omega-3 fatty acids in chemoresistant pancreatic cancer cells: mechanism of action may be more complex. Ann Surg Oncol 2008; 15(7):2057.

    Article  PubMed  Google Scholar 

  70. Chajes V, Bougnoux P. Omega-6/omega-3 polyunsaturated fatty acid ratio and cancer. World Rev Nutr Diet 2003; 92:133–51.

    Article  CAS  PubMed  Google Scholar 

  71. Heimli H, Giske C, Naderi S, Drevon CA, Hollung K. Eicosapentaenoic acid promotes apoptosis in Ramos cells via activation of caspase-3 and -9. Lipids 2002; 37(8):797–802.

    Article  CAS  PubMed  Google Scholar 

  72. Arita K, Kobuchi H, Utsumi T, et al. Mechanism of apoptosis in HL-60 cells induced by n-3 and n-6 polyunsaturated fatty acids. Biochem Pharmacol 2001; 62(7):821–8.

    Article  CAS  PubMed  Google Scholar 

  73. Avula CP, Zaman AK, Lawrence R, Fernandes G. Induction of apoptosis and apoptotic mediators in Balb/C splenic lymphocytes by dietary n-3 and n-6 fatty acids. Lipids 1999; 34(9):921–7.

    Article  CAS  PubMed  Google Scholar 

  74. Danbara N, Yuri T, Tsujita-Kyutoku M, et al. Conjugated docosahexaenoic acid is a potent inducer of cell cycle arrest and apoptosis and inhibits growth of colo 201 human colon cancer cells. Nutr Cancer 2004; 50(1):71–9.

    Article  CAS  PubMed  Google Scholar 

  75. Siddiqui RA, Jenski LJ, Harvey KA, Wiesehan JD, Stillwell W, Zaloga GP. Cell-cycle arrest in Jurkat leukemic cells: a possible role for docosahexaenoic acid. Biochem J 2003; 371(Pt 2):621–9.

    Article  CAS  PubMed  Google Scholar 

  76. Serini S, Trombino S, Oliva F, et al. Docosahexaenoic acid induces apoptosis in lung cancer cells by increasing MKP-1 and down-regulating p-ERK1/2 and p-p38 expression. Apoptosis 2008; 13(9):1172–83.

    Article  CAS  PubMed  Google Scholar 

  77. Trombetta A, Maggiora M, Martinasso G, Cotogni P, Canuto RA, Muzio G. Arachidonic and docosahexaenoic acids reduce the growth of A549 human lung-tumor cells increasing lipid peroxidation and PPARs. Chem Biol Interact 2007; 165(3):239–50.

    Article  CAS  PubMed  Google Scholar 

  78. Dannenberg AJ, Lippman SM, Mann JR, Subbaramaiah K, DuBois RN. Cyclooxygenase-2 and epidermal growth factor receptor: Pharmacologic targets for chemoprevention. J Clin Oncol 2005; 23(2):254–66.

    Article  CAS  PubMed  Google Scholar 

  79. Prescott SM, Fitzpatrick FA. Cyclooxygenase-2 and carcinogenesis. Biochim Biophys Acta 2000; 1470(2):M69–M78.

    CAS  PubMed  Google Scholar 

  80. Tapiero H, Ba GN, Couvreur P, Tew KD. Polyunsaturated fatty acids (PUFA) and eicosanoids in human health and pathologies. Biomed Pharmacother 2002; 56(5):215–22.

    Article  CAS  PubMed  Google Scholar 

  81. Rose DP, Connolly JM. Regulation of tumor angiogenesis by dietary fatty acids and eicos-anoids. Nutr Cancer 2000; 37(2):119–27.

    Article  CAS  PubMed  Google Scholar 

  82. Karmali RA. Eicosanoids in neoplasia. Prev Med 1987; 16(4):493–502.

    Article  CAS  PubMed  Google Scholar 

  83. Nie D, Tang K, Szekeres K, Trikha M, Honn KV. The role of eicosanoids in tumor growth and metastasis. Ernst Schering Res Found Workshop 2000; 31:201–17.

    CAS  PubMed  Google Scholar 

  84. Ge Y, Chen Z, Kang ZB, Cluette-Brown J, Laposata M, Kang JX. Effects of adenoviral gene transfer of Caenorhabditis elegans n-3 fatty acid desaturase on the lipid profile and growth of human breast cancer cells. Anticancer Res 2002; 22(2A):537–43.

    CAS  PubMed  Google Scholar 

  85. Yang P, Felix E, Madden T, Fischer SM, Newman RA. Quantitative high-performance liquid chromatography/electrospray ionization tandem mass spectrometric analysis of 2- and 3-series prostaglandins in cultured tumor cells. Anal Biochem 2002; 308(1):168–77.

    Article  CAS  PubMed  Google Scholar 

  86. Maldve RE, Kim Y, Muga SJ, Fischer SM. Prostaglandin E (2) regulation of cyclooxygenase expression in keratinocytes is mediated via cyclic nucleotide-linked prostaglandin receptors. J Lipid Res 2000; 41(6):873–81.

    CAS  PubMed  Google Scholar 

  87. Lo CJ, Chiu KC, Fu M, Lo R, Helton S. Fish oil augments macrophage cyclooxygenase II (COX-2) gene expression induced by endotoxin. J Surg Res 1999; 86(1):103–7.

    Article  CAS  PubMed  Google Scholar 

  88. Hardman WE. Omega-3 fatty acids to augment cancer therapy. J Nutr 2002; 132(11 Suppl):3508S–12S.

    CAS  PubMed  Google Scholar 

  89. Rao CV, Hirose Y, Indranie C, Reddy BS. Modulation of experimental colon tumorigenesis by types and amounts of dietary fatty acids. Cancer Res 2001; 61(5):1927–33.

    CAS  PubMed  Google Scholar 

  90. Backlund MG, Mann JR, Holla VR, et al. 15-Hydroxyprostaglandin dehydrogenase is down-regulated in colorectal cancer. J Biol Chem 2005; 280(5):3217–23.

    Article  CAS  PubMed  Google Scholar 

  91. Myung SJ, Rerko RM, Yan M, et al. 15-Hydroxyprostaglandin dehydrogenase is an in vivo suppressor of colon tumorigenesis. Proc Natl Acad Sci USA 2006; 103(32):12098–102.

    Article  CAS  PubMed  Google Scholar 

  92. Tong M, Ding Y, Tai HH. Reciprocal regulation of cyclooxygenase-2 and 15-hydroxyprostaglandin dehydrogenase expression in A549 human lung adenocarcinoma cells. Carcinogenesis 2006; 27(11):2170–9.

    Article  CAS  PubMed  Google Scholar 

  93. Ding Y, Tong M, Liu S, Moscow JA, Tai HH. NAD+-linked 15-hydroxyprostaglandin dehydrogenase (15-PGDH) behaves as a tumor suppressor in lung cancer. Carcinogenesis 2005; 26(1):65–72.

    Article  CAS  PubMed  Google Scholar 

  94. Lim K, Han C, Xu L, Wu T. Omega-3 polyunsaturated fatty acids inhibit hepatocellular carcinoma cell growth through downregulation of beta-catenin/wnt signaling pathway. In the 97th Annual Meeting of the American Association Cancer Research 2006: Abstract # 630.

    Google Scholar 

  95. Kang ZB, Ge Y, Chen Z, et al. Adenoviral gene transfer of Caenorhabditis elegans n–3 fatty acid desaturase optimizes fatty acid composition in mammalian cells. Proc Natl Acad Sci USA 2001; 98(7):4050–4.

    Article  CAS  PubMed  Google Scholar 

  96. Tsujita E, Taketomi A, Gion T, et al. Suppressed MKP-1 is an independent predictor of outcome in patients with hepatocellular carcinoma. Oncology 2005; 69(4):342–7.

    Article  CAS  PubMed  Google Scholar 

  97. Vicent S, Garayoa M, Lopez-Picazo JM, et al. Mitogen-activated protein kinase phosphatase-1 is overexpressed in non-small cell lung cancer and is an independent predictor of outcome in patients. Clin Cancer Res 2004; 10(11):3639–49.

    Article  CAS  PubMed  Google Scholar 

  98. Hardman WE, Moyer MP, Cameron IL. Dietary fish oil sensitizes A549 lung xenografts to doxorubicin chemotherapy. Cancer Lett 2000; 151(2):145–51.

    Article  CAS  PubMed  Google Scholar 

  99. Narayanan BA. Chemopreventive agents alters global gene expression pattern: Predicting their mode of action and targets. Curr Cancer Drug Targets 2006; 6(8):711–27.

    Article  CAS  PubMed  Google Scholar 

  100. Pardini RS, Wilson D, Schiff S, Bajo SA, Pierce R. Nutritional intervention with omega-3 Fatty acids in a case of malignant fibrous histiocytoma of the lungs. Nutr Cancer 2005; 52(2):121–9.

    Article  PubMed  Google Scholar 

  101. Bradley MO, Webb NL, Anthony FH, et al. Tumor targeting by covalent conjugation of a natural fatty acid to paclitaxel. Clin Cancer Res 2001; 7(10):3229–38.

    CAS  PubMed  Google Scholar 

  102. Payne M, Ellis P, Dunlop D, et al. DHA-paclitaxel (Taxoprexin) as first-line treatment in patients with stage IIIB or IV non-small cell lung cancer: Report of a phase II open-label multicenter trial. J Thorac Oncol 2006; 1(9):984–90.

    Article  PubMed  Google Scholar 

  103. Diepgen TL, Mahler V. The epidemiology of skin cancer. Br J Dermatol 2002; 146(Suppl 61):1–6.

    Article  PubMed  Google Scholar 

  104. Urbach F. Incidence of nonmelanoma skin cancer. Dermatol Clin 1991; 9(4):751–5.

    CAS  PubMed  Google Scholar 

  105. Miller DL, Weinstock MA. Nonmelanoma skin cancer in the United States: Incidence. J Am Acad Dermatol 1994; 30(5 Pt 1):774–8.

    Article  CAS  PubMed  Google Scholar 

  106. Johnson TM, Dolan OM, Hamilton TA, Lu MC, Swanson NA, Lowe L. Clinical and histologic trends of melanoma. J Am Acad Dermatol 1998; 38 (5 Pt 1):681–6.

    Article  CAS  PubMed  Google Scholar 

  107. Baliga MS, Katiyar SK. Chemoprevention of photocarcinogenesis by selected dietary botanicals. Photochem Photobiol Sci 2006; 5(2):243–53.

    Article  CAS  PubMed  Google Scholar 

  108. Huang XX, Bernerd F, Halliday GM. Ultraviolet A within sunlight induces mutations in the epidermal basal layer of engineered human skin. Am J Pathol 2009; 174(4):1534–43.

    Article  CAS  PubMed  Google Scholar 

  109. Gruber F, Kastelan M, Brajac I, et al. Molecular and genetic mechanisms in melanoma. Coll Antropol 2008; 32(Suppl 2):147–52.

    PubMed  Google Scholar 

  110. Ullrich SE. Sunlight and skin cancer: Lessons from the immune system. Mol Carcinog 2007; 46(8):629–33.

    Article  CAS  PubMed  Google Scholar 

  111. Green A, Williams G, Neale R, et al. Daily sunscreen application and betacarotene supplementation in prevention of basal-cell and squamous-cell carcinomas of the skin: A randomised controlled trial. Lancet 1999; 354(9180):723–9.

    Article  CAS  PubMed  Google Scholar 

  112. Weinstock MA. Do sunscreens increase or decrease melanoma risk: An epidemiologic evaluation. J Investig Dermatol Symp Proc 1999; 4(1):97–100.

    Article  CAS  PubMed  Google Scholar 

  113. Haywood R, Wardman P, Sanders R, Linge C. Sunscreens inadequately protect against ultraviolet-A-induced free radicals in skin: implications for skin aging and melanoma? J Invest Dermatol 2003; 121(4):862–8.

    Article  CAS  PubMed  Google Scholar 

  114. Liu G, Bibus DM, Bode AM, Ma WY, Holman RT, Dong Z. Omega 3 but not omega 6 fatty acids inhibit AP-1 activity and cell transformation in JB6 cells. Proc Natl Acad Sci USA 2001; 98(13):7510–5.

    Article  CAS  PubMed  Google Scholar 

  115. Potter JD, Slattery ML, Bostick RM, Gapstur SM. Colon cancer: A review of the epidemiology. Epidemiol Rev 1993; 15(2):499–545.

    CAS  PubMed  Google Scholar 

  116. Parkinson AJ, Cruz AL, Heyward WL, et al. Elevated concentrations of plasma omega-3 polyunsaturated fatty acids among Alaskan Eskimos. Am J Clin Nutr 1994; 59(2):384–8.

    CAS  PubMed  Google Scholar 

  117. Sauer LA, Dauchy RT, Blask DE. Mechanism for the antitumor and anticachectic effects of n-3 fatty acids. Cancer Res 2000; 60(18):5289–95.

    CAS  PubMed  Google Scholar 

  118. Black HS, Lenger W, Phelps AW, Thornby JI. Influence of dietary lipid upon ultraviolet-light carcinogenesis. Nutr Cancer 1983; 5(2):59–68.

    Article  CAS  PubMed  Google Scholar 

  119. Black HS, Lenger WA, Gerguis J, Thornby JI. Relation of antioxidants and level of dietary lipid to epidermal lipid peroxidation and ultraviolet carcinogenesis. Cancer Res 1985; 45(12 Pt 1):6254–9.

    CAS  PubMed  Google Scholar 

  120. Black HS, Rhodes LE. The potential of omega-3 fatty acids in the prevention of non-melanoma skin cancer. Cancer Detect Prev 2006; 30(3):224–32.

    Article  CAS  PubMed  Google Scholar 

  121. Black HS, Thornby JI, Gerguis J, Lenger W. Influence of dietary omega-6, -3 fatty acid sources on the initiation and promotion stages of photocarcinogenesis. Photochem Photobiol 1992; 56(2):195–9.

    Article  CAS  PubMed  Google Scholar 

  122. Yen A, Black HS, Tschen J. Effect of dietary omega-3 and omega-6 fatty acid sources on PUVA-induced cutaneous toxicity and tumorigenesis in the hairless mouse. Arch Dermatol Res 1994; 286(6):331–6.

    Article  CAS  PubMed  Google Scholar 

  123. Kune GA, Bannerman S, Field B, et al. Diet, alcohol, smoking, serum beta-carotene, and vitamin A in male nonmelanocytic skin cancer patients and controls. Nutr Cancer 1992; 18(3):237–44.

    Article  CAS  PubMed  Google Scholar 

  124. Hakim IA, Harris RB, Ritenbaugh C. Fat intake and risk of squamous cell carcinoma of the skin. Nutr Cancer 2000; 36(2):155–62.

    Article  CAS  PubMed  Google Scholar 

  125. Mukhtar H, Elmets CA. Photocarcinogenesis: Mechanisms, models and human health implications. Photochem Photobiol 1996; 63(4):356–7.

    Article  CAS  PubMed  Google Scholar 

  126. Wang MT, Honn KV, Nie D. Cyclooxygenases, prostanoids, and tumor progression. Cancer Metastasis Rev 2007; 26(3–4):525–34.

    Article  CAS  PubMed  Google Scholar 

  127. Smith WL, DeWitt DL, Garavito RM. Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem 2000; 69:145–82.

    Article  CAS  PubMed  Google Scholar 

  128. Rundhaug JE, Fischer SM. Cyclo-oxygenase-2 plays a critical role in UV-induced skin carcinogenesis. Photochem Photobiol 2008; 84(2):322–9.

    Article  CAS  PubMed  Google Scholar 

  129. An KP, Athar M, Tang X, et al. Cyclooxygenase-2 expression in murine and human nonmelanoma skin cancers: Implications for therapeutic approaches. Photochem Photobiol 2002; 76(1):73–80.

    Article  CAS  PubMed  Google Scholar 

  130. Tripp CS, Blomme EA, Chinn KS, Hardy MM, LaCelle P, Pentland AP. Epidermal COX-2 induction following ultraviolet irradiation: suggested mechanism for the role of COX-2 inhibition in photoprotection. J Invest Dermatol 2003; 121(4):853–61.

    Article  CAS  PubMed  Google Scholar 

  131. Akunda JK, Chun KS, Sessoms AR, Lao HC, Fischer SM, Langenbach R. Cyclooxygenase-2 deficiency increases epidermal apoptosis and impairs recovery following acute UVB exposure. Mol Carcinog 2007; 46(5):354–62.

    Article  CAS  PubMed  Google Scholar 

  132. Fischer SM, Pavone A, Mikulec C, Langenbach R, Rundhaug JE. Cyclooxygenase-2 expression is critical for chronic UV-induced murine skin carcinogenesis. Mol Carcinog 2007; 46(5):363–71.

    Article  CAS  PubMed  Google Scholar 

  133. Rhodes LE, Durham BH, Fraser WD, Friedmann PS. Dietary fish oil reduces basal and ultraviolet B-generated PGE2 levels in skin and increases the threshold to provocation of polymorphic light eruption. J Invest Dermatol 1995; 105(4):532–5.

    Article  CAS  PubMed  Google Scholar 

  134. Rhodes LE, O‘Farrell S, Jackson MJ, Friedmann PS. Dietary fish-oil supplementation in humans reduces UVB-erythemal sensitivity but increases epidermal lipid peroxidation. J Invest Dermatol 1994; 103(2):151–4.

    Article  CAS  PubMed  Google Scholar 

  135. Gresham A, Masferrer J, Chen X, Leal-Khouri S, Pentland AP. Increased synthesis of high-molecular-weight cPLA2 mediates early UV-induced PGE2 in human skin. Am J Physiol 1996; 270(4 Pt 1):C1037–50.

    CAS  PubMed  Google Scholar 

  136. Shreedhar V, Giese T, Sung VW, Ullrich SE. A cytokine cascade including prostaglandin E2, IL-4, and IL-10 is responsible for UV-induced systemic immune suppression. J Immunol 1998; 160(8):3783–9.

    CAS  PubMed  Google Scholar 

  137. Moison RM, Steenvoorden DP, Beijersbergen van Henegouwen GM. Topically applied eicosapentaenoic acid protects against local immunosuppression induced by UVB irradiation, cis-urocanic acid and thymidine dinucleotides. Photochem Photobiol 2001; 73(1):64–70.

    Article  CAS  PubMed  Google Scholar 

  138. Pupe A, Moison R, De Haes P, et al. Eicosapentaenoic acid, a n-3 polyunsaturated fatty acid differentially modulates TNF-alpha, IL-1alpha, IL-6 and PGE2 expression in UVB-irradiated human keratinocytes. J Invest Dermatol 2002; 118(4):692–8.

    Article  CAS  PubMed  Google Scholar 

  139. Storey A, McArdle F, Friedmann PS, Jackson MJ, Rhodes LE. Eicosapentaenoic acid and docosahexaenoic acid reduce UVB- and TNF-alpha-induced IL-8 secretion in keratinocytes and UVB-induced IL-8 in fibroblasts. J Invest Dermatol 2005; 124(1):248–55.

    Article  CAS  PubMed  Google Scholar 

  140. Svobodova A, Walterova D, Vostalova J. Ultraviolet light induced alteration to the skin. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2006; 150(1):25–38.

    CAS  PubMed  Google Scholar 

  141. Dreiling L, Hoffman S, Robinson WA. Melanoma: Epidemiology, pathogenesis, and new modes of treatment. Adv Intern Med 1996; 41:553–604.

    CAS  PubMed  Google Scholar 

  142. Atkins MB. The treatment of metastatic melanoma with chemotherapy and biologics. Curr Opin Oncol 1997; 9(2):205–13.

    Article  CAS  PubMed  Google Scholar 

  143. Reich R, Royce L, Martin GR. Eicosapentaenoic acid reduces the invasive and metastatic activities of malignant tumor cells. Biochem Biophys Res Commun 1989; 160(2):559–64.

    Article  CAS  PubMed  Google Scholar 

  144. Abbott WG, Tezabwala B, Bennett M, Grundy SM. Melanoma lung metastases and cytolytic effector cells in mice fed antioxidant-balanced corn oil or fish oil diets. Nat Immun 1994; 13(1):15–28.

    CAS  PubMed  Google Scholar 

  145. Albino AP, Juan G, Traganos F, et al. Cell cycle arrest and apoptosis of melanoma cells by docosahexaenoic acid: Association with decreased pRb phosphorylation. Cancer Res 2000; 60(15):4139–45.

    CAS  PubMed  Google Scholar 

  146. Xia S, Lu Y, Wang J, et al. Melanoma growth is reduced in fat-1 transgenic mice: impact of omega-6/omega-3 essential fatty acids. Proc Natl Acad Sci USA 2006; 103(33):12499–504.

    Article  CAS  PubMed  Google Scholar 

  147. Wu H, Goel V, Haluska FG. PTEN signaling pathways in melanoma. Oncogene 2003; 22(20):3113–22.

    Article  CAS  PubMed  Google Scholar 

  148. Sansal I, Sellers WR. The biology and clinical relevance of the PTEN tumor suppressor pathway. J Clin Oncol 2004; 22(14):2954–63.

    Article  CAS  PubMed  Google Scholar 

  149. Stokoe D. Pten. Curr Biol 2001; 11(13):R502.

    Article  CAS  PubMed  Google Scholar 

  150. Guldberg P, thor Straten P, Birck A, Ahrenkiel V, Kirkin AF, Zeuthen J. Disruption of the MMAC1/PTEN gene by deletion or mutation is a frequent event in malignant melanoma. Cancer Res 1997; 57(17):3660–3.

    CAS  PubMed  Google Scholar 

  151. Tsao H, Zhang X, Benoit E, Haluska FG. Identification of PTEN/MMAC1 alterations in uncultured melanomas and melanoma cell lines. Oncogene 1998; 16(26):3397–402.

    Article  CAS  PubMed  Google Scholar 

  152. Hwang PH, Yi HK, Kim DS, Nam SY, Kim JS, Lee DY. Suppression of tumorigenicity and metastasis in B16F10 cells by PTEN/MMAC1/TEP1 gene. Cancer Lett 2001; 172(1):83–91.

    Article  CAS  PubMed  Google Scholar 

  153. Denkins Y, Kempf D, Ferniz M, Nileshwar S, Marchetti D. Role of omega-3 polyunsaturated fatty acids on cyclooxygenase-2 metabolism in brain-metastatic melanoma. J Lipid Res 2005; 46(6):1278–84.

    Article  CAS  PubMed  Google Scholar 

  154. Gores GJ. Cholangiocarcinoma: Current concepts and insights. Hepatology (Baltimore, MD) 2003; 37(5):961–9.

    Article  PubMed  Google Scholar 

  155. Sirica AE. Cholangiocarcinoma: Molecular targeting strategies for chemoprevention and therapy. Hepatology (Baltimore, MD) 2005; 41(1):5–15.

    Article  PubMed  Google Scholar 

  156. Berthiaume EP, Wands J. The molecular pathogenesis of cholangiocarcinoma. Semin Liver Dis 2004; 24(2):127–37.

    Article  CAS  PubMed  Google Scholar 

  157. Wu T. Cyclooxygenase-2 and prostaglandin signaling in cholangiocarcinoma. Biochim Biophys Acta 2005; 1755(2):135–50.

    CAS  PubMed  Google Scholar 

  158. Lazaridis KN, Gores GJ. Cholangiocarcinoma. Gastroenterology 2005; 128(6):1655–67.

    Article  PubMed  Google Scholar 

  159. Malhi H, Gores GJ. Cholangiocarcinoma: Modern advances in understanding a deadly old disease. J Hepatol 2006; 45(6):856–67.

    Article  CAS  PubMed  Google Scholar 

  160. Larsson SC, Kumlin M, Ingelman-Sundberg M, Wolk A. Dietary long-chain n-3 fatty acids for the prevention of cancer: a review of potential mechanisms. Am J Clin Nutr 2004; 79(6):935–45.

    CAS  PubMed  Google Scholar 

  161. Endo K, Yoon BI, Pairojkul C, Demetris AJ, Sirica AE. ERBB-2 over expression and cyclooxygenase-2 up-regulation in human cholangiocarcinoma and risk conditions. Hepatology (Baltimore, MD) 2002; 36(2):439–50.

    Article  CAS  PubMed  Google Scholar 

  162. Hayashi N, Yamamoto H, Hiraoka N, et al. Differential expression of cyclooxygenase-2 (COX-2) in human bile duct epithelial cells and bile duct neoplasm. Hepatology (Baltimore, MD) 2001; 34 (4 Pt 1):638–50.

    Article  CAS  PubMed  Google Scholar 

  163. Chariyalertsak S, Sirikulchayanonta V, Mayer D, et al. Aberrant cyclooxygenase isozyme expression in human intrahepatic cholangiocarcinoma. Gut 2001; 48(1):80–6.

    Article  CAS  PubMed  Google Scholar 

  164. Han C, Leng J, Demetris AJ, Wu T. Cyclooxygenase-2 promotes human cholangiocarcinoma growth: evidence for cyclooxygenase-2-independent mechanism in celecoxib-mediated induction of p21waf1/cip1 and p27kip1 and cell cycle arrest. Cancer Res 2004; 64(4):1369–76.

    Article  CAS  PubMed  Google Scholar 

  165. Wu T, Leng J, Han C, Demetris AJ. The cyclooxygenase-2 inhibitor celecoxib blocks phosphorylation of Akt and induces apoptosis in human cholangiocarcinoma cells. Mol Cancer Ther 2004; 3(3):299–307.

    CAS  PubMed  Google Scholar 

  166. Wu T, Han C, Lunz JG, 3rd, Michalopoulos G, Shelhamer JH, Demetris AJ. Involvement of 85-kd cytosolic phospholipase A(2) and cyclooxygenase-2 in the proliferation of human cholangiocarcinoma cells. Hepatology (Baltimore, MD) 2002; 36(2):363–73.

    Article  CAS  PubMed  Google Scholar 

  167. Nzeako UC, Guicciardi ME, Yoon JH, Bronk SF, Gores GJ. COX-2 inhibits Fas-mediated apoptosis in cholangiocarcinoma cells. Hepatology (Baltimore, MD) 2002; 35(3):552–9.

    Article  CAS  PubMed  Google Scholar 

  168. Zhang Z, Lai GH, Sirica AE. Celecoxib-induced apoptosis in rat cholangiocarcinoma cells mediated by Akt inactivation and Bax translocation. Hepatology (Baltimore, Md) 2004; 39(4):1028–37.

    Article  CAS  PubMed  Google Scholar 

  169. Lai GH, Zhang Z, Sirica AE. Celecoxib acts in a cyclooxygenase-2-independent manner and in synergy with emodin to suppress rat cholangiocarcinoma growth in vitro through a mechanism involving enhanced Akt inactivation and increased activation of caspases-9 and -3. Mol Cancer Ther 2003; 2(3):265–71.

    CAS  PubMed  Google Scholar 

  170. Sirica AE, Lai GH, Endo K, Zhang Z, Yoon BI. Cyclooxygenase-2 and ERBB-2 in cholangiocarcinoma: potential therapeutic targets. Semin Liver Dis 2002; 22(3):303–13.

    Article  CAS  PubMed  Google Scholar 

  171. Smith WL. Cyclooxygenases, peroxide tone and the allure of fish oil. Curr Opin Cell Biol 2005; 17(2):174–82.

    Article  CAS  PubMed  Google Scholar 

  172. Ashida K, Terada T, Kitamura Y, Kaibara N. Expression of E-cadherin, alpha-catenin, beta-catenin, and CD44 (standard and variant isoforms) in human cholangiocarcinoma: an immunohistochemical study. Hepatology (Baltimore, MD) 1998; 27(4):974–82.

    Article  CAS  PubMed  Google Scholar 

  173. Sugimachi K, Taguchi K, Aishima S, et al. Altered expression of beta-catenin without genetic mutation in intrahepatic cholangiocarcinoma. Mod Pathol 2001; 14(9):900–5.

    Article  CAS  PubMed  Google Scholar 

  174. Tokumoto N, Ikeda S, Ishizaki Y, et al. Immunohistochemical and mutational analyses of Wnt signaling components and target genes in intrahepatic cholangiocarcinomas. Int J Oncol 2005; 27(4):973–80.

    CAS  PubMed  Google Scholar 

  175. Settakorn J, Kaewpila N, Burns GF, Leong AS. FAT, E-cadherin, beta catenin, HER 2/neu, Ki67 immuno-expression, and histological grade in intrahepatic cholangiocarcinoma. J Clin Pathol 2005; 58(12):1249–54.

    Article  CAS  PubMed  Google Scholar 

  176. Hoppler S, Kavanagh CL. Wnt signalling: variety at the core. J Cell Sci 2007; 120(Pt 3):385–93.

    Article  CAS  PubMed  Google Scholar 

  177. Clevers H. Wnt/beta-catenin signaling in development and disease. Cell 2006; 127(3):469–80.

    Article  CAS  PubMed  Google Scholar 

  178. Gordon MD, Nusse R. Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem 2006; 281(32):22429–33.

    Article  CAS  PubMed  Google Scholar 

  179. Moon RT, Kohn AD, De Ferrari GV, Kaykas A. WNT and beta-catenin signalling: Diseases and therapies. Nat Rev Genet 2004; 5(9):691–701.

    Article  CAS  PubMed  Google Scholar 

  180. Castellone MD, Teramoto H, Williams BO, Druey KM, Gutkind JS. Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis. Science 2005; 310(5753):1504–10.

    Article  CAS  PubMed  Google Scholar 

  181. Shao J, Jung C, Liu C, Sheng H. Prostaglandin E2 stimulates the beta-catenin/T cell factor-dependent transcription in colon cancer. J Biol Chem 2005; 280(28):26565–72.

    Article  CAS  PubMed  Google Scholar 

  182. Mayani H, Flores-Figueroa E, Chavez-Gonzalez A. In vitro biology of human myeloid leukemia. Leuk Res 2009; 33(5):624–37.

    Article  CAS  PubMed  Google Scholar 

  183. Lu C, Hassan HT. Human stem cell factor-antibody [anti-SCF] enhances chemotherapy cytotoxicity in human CD34+ resistant myeloid leukemia cells. Leuk Res 2006; 30(3):296–302.

    Article  CAS  PubMed  Google Scholar 

  184. Krause DS, Van Etten RA. Right on target: Eradicating leukemic stem cells. Trends Mol Med 2007; 13(11):470–81.

    CAS  PubMed  Google Scholar 

  185. Yamagami T, Porada CD, Pardini RS, Zanjani ED, Almeida-Porada G. Docosahexaenoic acid induces dose dependent cell death in an early undifferentiated subtype of acute myeloid leukemia cell line. Cancer Biol Ther 2009; 8(4):331–7.

    Article  CAS  PubMed  Google Scholar 

  186. Stulnig TM, Huber J, Leitinger N, et al. Polyunsaturated eicosapentaenoic acid displaces proteins from membrane rafts by altering raft lipid composition. J Biol Chem 2001; 276(40):37335–40.

    Article  CAS  PubMed  Google Scholar 

  187. Li Q, Tan L, Wang C, et al. Polyunsaturated eicosapentaenoic acid changes lipid composition in lipid rafts. Eur J Nutr 2006; 45(3):144–51.

    Article  CAS  PubMed  Google Scholar 

  188. Colquhoun A, Schumacher RI. Gamma-Linolenic acid and eicosapentaenoic acid induce modifications in mitochondrial metabolism, reactive oxygen species generation, lipid peroxidation and apoptosis in Walker 256 rat carcinosarcoma cells. Biochim Biophys Acta 2001; 1533(3):207–19.

    CAS  PubMed  Google Scholar 

  189. Sturlan S, Baumgartner M, Roth E, Bachleitner-Hofmann T. Docosahexaenoic acid enhances arsenic trioxide-mediated apoptosis in arsenic trioxide-resistant HL-60 cells. Blood 2003; 101(12):4990–7.

    Article  CAS  PubMed  Google Scholar 

  190. Leonardi F, Attorri L, Benedetto RD, et al. Docosahexaenoic acid supplementation induces dose and time dependent oxidative changes in C6 glioma cells. Free Radic Res 2007; 41(7):748–56.

    Article  CAS  PubMed  Google Scholar 

  191. Koumura T, Nakamura C, Nakagawa Y. Involvement of hydroperoxide in mitochondria in the induction of apoptosis by the eicosapentaenoic acid. Free Radic Res 2005; 39(3):225–35.

    Article  CAS  PubMed  Google Scholar 

  192. Menendez JA, Lupu R, Colomer R. Exogenous supplementation with omega-3 polyunsaturated fatty acid docosahexaenoic acid (DHA; 22:6n-3) synergistically enhances taxane cytotoxicity and downregulates Her-2/neu (c-erbB-2) oncogene expression in human breast cancer cells. Eur J Cancer Prev 2005; 14(3):263–70.

    Article  CAS  PubMed  Google Scholar 

  193. Narayanan NK, Narayanan BA, Bosland M, Condon MS, Nargi D. Docosahexaenoic acid in combination with celecoxib modulates HSP70 and p53 proteins in prostate cancer cells. Int J Cancer 2006; 119(7):1586–98.

    Article  CAS  PubMed  Google Scholar 

  194. Ho SY, Chen WC, Chiu HW, Lai CS, Guo HR, Wang YJ. Combination treatment with arsenic trioxide and irradiation enhances apoptotic effects in U937 cells through increased mitotic arrest and ROS generation. Chem Biol Interact 2009; 179(2–3):304–13.

    Article  CAS  PubMed  Google Scholar 

  195. Han YH, Kim SZ, Kim SH, Park WH. Arsenic trioxide inhibits the growth of Calu-6 cells via inducing a G2 arrest of the cell cycle and apoptosis accompanied with the depletion of GSH. Cancer Lett 2008; 270(1):40–55.

    Article  CAS  PubMed  Google Scholar 

  196. Kim HR, Kim EJ, Yang SH, et al. Combination treatment with arsenic trioxide and sulindac augments their apoptotic potential in lung cancer cells through activation of caspase cascade and mitochondrial dysfunction. Int J Oncol 2006; 28(6):1401–8.

    CAS  PubMed  Google Scholar 

  197. Woo SH, Park IC, Park MJ, et al. Arsenic trioxide induces apoptosis through a reactive oxygen species-dependent pathway and loss of mitochondrial membrane potential in HeLa cells. Int J Oncol 2002; 21(1):57–63.

    CAS  PubMed  Google Scholar 

  198. Brown M, Bellon M, Nicot C. Emodin and DHA potently increase arsenic trioxide interferon-alpha-induced cell death of HTLV-I-transformed cells by generation of reactive oxygen species and inhibition of Akt and AP-1. Blood 2007; 109(4):1653–9.

    Article  CAS  PubMed  Google Scholar 

  199. Nowell PC, Hungerford DA. Chromosome studies on normal and leukemic human leukocytes. J Natl Cancer Inst 1960; 25:85–109.

    CAS  PubMed  Google Scholar 

  200. Rowley JD. Letter: A new consistent chromosomal abnormality in chronic myelogenous leukemia identified by quinacrine fluorescence and Giemsa staining. Nature 1973; 243(5405):290–3.

    Article  CAS  PubMed  Google Scholar 

  201. Sattler M, Griffin JD. Molecular mechanisms of transformation by the BCR-ABL oncogene. Semin Hematol 2003; 40(2 Suppl 2):4–10.

    Article  CAS  PubMed  Google Scholar 

  202. Cortes J, Kim DW, Raffoux E, et al. Efficacy and safety of dasatinib in imatinib-resistant or -intolerant patients with chronic myeloid leukemia in blast phase. Leukemia 2008; 22(12):2176–83.

    Article  CAS  PubMed  Google Scholar 

  203. Franceschino A, Tornaghi L, Piazza R, Pogliani E, Gambacorti-Passerini C. Imatinib failed to eradicate chronic myeloid leukemia in a patient with minimal residual disease. Haematologica 2006; 91(6 Suppl):ECR14.

    PubMed  Google Scholar 

  204. Gambacorti-Passerini C, Piazza R, D‘Incalci M. Bcr-Abl mutations, resistance to imatinib and imatinib plasma levels. Blood 2003; 102(5):1933–4; author reply 4–5.

    Article  CAS  PubMed  Google Scholar 

  205. de Lima TM, Amarante-Mendes GP, Curi R. Docosahexaenoic acid enhances the toxic effect of imatinib on Bcr-Abl expressing HL-60 cells. Toxicol In Vitro 2007; 21(8):1678–85.

    Article  PubMed  CAS  Google Scholar 

  206. Wang Y, Li L, Jiang W, Larrick JW. Synthesis and evaluation of a DHA and 10-hydroxycamptothecin conjugate. Bioorg Med Chem 2005; 13(19):5592–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the Korea Science & Engineering Foundation through the Infection Signaling Network Research Center (R13-2007-020-01000-0) and the Korea government (MEST) (#2009-0073970).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyu Lim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lim, K., Wu, T. (2010). ω-3 PUFAs and Other Cancers. In: Calviello, G., Serini, S. (eds) Dietary Omega-3 Polyunsaturated Fatty Acids and Cancer. Diet and Cancer, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3579-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3579-0_8

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3578-3

  • Online ISBN: 978-90-481-3579-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics