Skip to main content

Relationship between eutrophication reference conditions and boundary settings considering OSPAR recommendations and the Water Framework Directive—examples from the German Bight

  • Chapter

Part of the book series: Developments in Hydrobiology ((DIHY,volume 207))

Abstract

In order to allow for natural variability, the original OSPAR assessment procedure for eutrophication (Comprehensive Procedure) sets the threshold between Non-Problem/Problem Area (elevated levels) at 50% above natural background concentrations, which is equivalent to the boundary setting good/moderate for the EU Water Framework Directive (WFD). The 50% level corresponds to the recent natural variability of nutrient gradients in coastal and estuarine waters in the German Bight. Based on this threshold, a proposal is given for the additional boundary settings required for the WFD assessments. Examples, based on concentrations of total nitrogen and other correlated eutrophication components, are presented. However, for eutrophication effects such as oxygen deficiency, reduced transparency and increased transboundary loads, especially for offshore regions, 50% exceedance of the natural background surpasses ‘slight differences’ as recommended by the boundary good/moderate for the WFD. For this reason, 15% is proposed as the boundary setting for good/moderate and discussed for different parameters. Overlapping between recent means and their standard deviations and the four boundary settings for the WFD cannot be avoided, thereby causing weak assessments. Since the part of the variability of recent data is caused by hydrodynamics, coupled with salinity variation, the variability could be reduced to some degree by relating the data to mean salinities. By doing this, the significance of classifications could be improved. The application of this procedure is discussed for examples from the German Bight.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen, J. H., D. J. Conley & S. Hedal, 2004. Palaeoecology, reference conditions and classification of ecological status: the EU Water Framework Directive in practice. Marine Pollution Bulletin 49: 283–290.

    Article  CAS  Google Scholar 

  • Astall, C. M. & M. B. Jones, 1991. Respiration and biometry in the sea cucumber Holothuria forskali. Journal of Marine Biological Association of the United Kingdom 71: 73–81.

    Article  Google Scholar 

  • Baden, S. P., L. Pihl & R. Rosenberg, 1990. Effects of oxygen depletion on the ecology, blood physiology and fishery of the Norway lobster Nephrops norvegicus. Marine Ecology Progress Series 67: 141–155.

    Article  Google Scholar 

  • Bauerfeind, E., W. Hickel, U. Niermann & H. von Westernhagen, 1986. Sauerstoff-Defizit in tiefen Rinnen der Deutschen Bucht: Ursachen und biologische Auswirkungen. Biologische Anstalt Helgoland, Hamburg, Jahresbericht 1986: 72–79.

    Google Scholar 

  • Behar, S., 1997. Testing the Waters: Chemical and Physical Vital Signs of a River. River Watch Network, Montpolier.

    Google Scholar 

  • Behrendt, H., M. Bach, R. Kunkel, D. Opitz, W.-G. Pagenkopf, G. Scholz & F. Wendland, 2003. Internationale Harmonisierung der Quantifizierung von Nährstoffeinträgen aus diffusen und punktuellen Quellen in die Oberflächengewässer Deutschlands. UBA-FB 000446, Texte 82/03.

    Google Scholar 

  • Benson, B. B. & D. Krause Jr., 1984. The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere. Limnology and Oceanography 29: 620–632.

    Article  CAS  Google Scholar 

  • Breitburg, D., 2002. Effects of hypoxia, and the balance between hypoxia and enrichment, on coastal fishes and fisheries. Estuaries 2: 767–781.

    Article  Google Scholar 

  • Brockmann, U. & K. Eberlein, 1986. River input of nutrients into the German Bight. In Skreslet, S. (ed.), The Role of Freshwater Outflow in Coastal Marine Ecosystems. NATO ASI Series G7. Springer, Berlin: 231–240.

    Google Scholar 

  • Chabot, D. & J. Dutil, 1999. Reduced growth of Atlantic cod in non-lethal hypoxic conditions. Journal of Fish Biology 55: 472–491.

    Article  Google Scholar 

  • Davis, J. C., 1975. Minimal dissolved oxygen requirements of aquatic life with emphasis on Canadian species: a review. Journal of Fish Research Board of Canada 32: 2295–2332.

    Google Scholar 

  • Dethlefsen, V. & H. von Westernhagen, 1983. Oxygen deficiency and effects on bottom fauna in the eastern German Bight 1982. Meeresforschung 30: 42–53.

    CAS  Google Scholar 

  • Diaz, R. J. & R. Rosenberg, 1995. Oceanography. Marine Biology Annual Review 33: 245–303.

    Google Scholar 

  • European Communities, 2000. Water Framework Directive. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy.

    Google Scholar 

  • European Communities, 2002. Guidance on typology, reference conditions and classification systems for transitional and coastal waters. Water Framework Directive, Common Implementation Strategy, Working Group 2.4, (COAST).

    Google Scholar 

  • Fishdoc, 2005. http://www.fishdoc.co.uk/water/temperature.htm.

    Google Scholar 

  • Gamenick, I., A. Jahn, K. Vopel & O. Giere, 1996. Hypoxia and sulphide as structuring factors in a macrozoobenthic community on the Baltic Sea shore: colonisation studies and tolerance experiments. Marine Ecology Progress Series 144: 73–85.

    Article  CAS  Google Scholar 

  • Gray, J. S., R. S. Wu & Y. Y. Or, 2002. Effects of hypoxia and organic enrichment on the coastal marine environment. Marine Ecology Progress Series 238: 249–279.

    Article  Google Scholar 

  • Hagerman, L. & B. Vismann, 1995. Anaerobic metabolism in the shrimp Crangon crangon exposed to hypoxia, anoxia and hydrogen sulfide. Marine Biology 123: 235–240.

    Article  CAS  Google Scholar 

  • Johansson, B., 1997. Behavioural response to gradually declining oxygen concentration by Baltic Sea macrobenthic crustaceans. Marine Biology 129: 71–78.

    Article  Google Scholar 

  • Jörgensen, B. B., 1980. Seasonal oxygen depletion in the bottom waters of a Danish fjord and its effect on the benthic community. OIKOS 34: 68–76.

    Article  Google Scholar 

  • Missouri, 2005. http://www.cares.missouri.edu/dardenne/StrTmUpd.htm.

    Google Scholar 

  • Mittelstaedt, E., W. Lange, C. Brockmann & K. C. Soetje, 1983. Die Strömungen in der Deutschen Bucht. BSH Map, Nr. 2347.

    Google Scholar 

  • Nielsen, S. L., K. Sand-Jensen, J. Borum & O. Geertz-Hansen, 2002a. Depth colonisation of eelgrass (Zostera marina) as determined by water transparency in Danish coastal waters. Estuaries 25: 1025–1032.

    Article  Google Scholar 

  • Nielsen, S. L., K. Sand-Jensen, J. Borum & O. Geertz-Hansen, 2002b. Phytoplankton, nutrients, and transparence in Danish coastal waters. Estuaries 25: 930–937.

    Article  CAS  Google Scholar 

  • Niermann, U., 1990. Oxygen deficiency in the south eastern North Sea in summer 1989. ICES, Copenhagen, C.M. 1990.

    Google Scholar 

  • Niermann, U., E. Bauerfeind, W. Hickel & H. von Westernhagen, 1990. The recovery of benthos following the impact of low oxygen concentrations in the German Bight. Netherlands Journal of Sea Research 25: 215–226.

    Article  Google Scholar 

  • OSPAR, 2000. OSPAR Quality Status Report 2000: Region II—Greater North Sea. OSPAR Commission.

    Google Scholar 

  • OSPAR, 2004a. Similarities and Synergies between the OSPAR Comprehensive Procedure, OSPAR Ecological Quality Objectives related to Eutrophication (EcoQOs-Eutro) and the EC Water Framework Directive. Submission from the OSPAR Eutrophication Committee to the Water Framework Directive Intercalibration Workshop, 11 February 2004. OSPAR Commission.

    Google Scholar 

  • OSPAR, 2004b. Testing for exceedence of target/threshold values. Joint meeting of the Eutrophication Task Group and the Working Group on Monitoring. Working Document 3, OSPAR Commission.

    Google Scholar 

  • OSPAR, 2005. Common Procedure for the Identification of the Eutrophication Status of the OSPAR Maritime Area. Reference number: 2005-3.4 OSPAR Commission.

    Google Scholar 

  • Pätsch, J. & H.-J. Lenhart, 2004. Daily loads of nutrients, total alkalinity, dissolved inorganic carbon and dissolved organic carbon of the European continental rivers for the years 1977–2002. Berichte aus dem Zentrum für Meeresund Klimaforschung, Universität Hamburg. Nr. 48.

    Google Scholar 

  • Peckolt, P. & J. S. Rivers, 1995. Physiological responses of the opportunistic macroalgae Cladophora vagabunda (L.) van den Hoek and Gracilaria tikvahiae (McLachlan) to environmental disturbances associated with eutrophication. Journal of Experimental Marine Biology and Ecology 190: 1–16.

    Article  Google Scholar 

  • Petersen, J. K. & G. I. Petersen, 1988. Sandkutlingens respiration og vakst under hypoxi. Masters thesis, University of Copenhagen.

    Google Scholar 

  • Pihl, L., S. P. Baden & R. J. Diaz, 1991. Effects of periodic hypoxia on distribution of demersal fish and crustaceans. Marine Biology 108: 349–360.

    Article  Google Scholar 

  • Pihl, L., S. P. Baden, R. J. Diaz & L. C. Schaffner, 1992. Hypoxia-induced structural changes in the diet of bottomfeeding fish and crustacea. Marine Biology 112: 349–361.

    Article  Google Scholar 

  • Rachor, E., 1983. Extreme Sauerstoffverhältnisse in der Deutschen Bucht. Arbeiten des Deutschen Fischerei-Verbandes (Hamburg), Heft 37 (Beiträge zur Eutrophie der Deutschen Bucht): 15–27.

    Google Scholar 

  • Rachor, E., 1985. Eutrophierung in der Nordsee—Bedrohung durch Sauerstoffmangel. Abhandlungen des Naturwissenschaftlichen Vereins zu Bremen 40: 283–292.

    Google Scholar 

  • Rachor, E. & H. Albrecht, 1983. Sauerstoffmangel im Bodenwasser der Deutschen Bucht. Veröffentlichungen des Instituts für Meeresforschung in Bremerhaven 19: 209–227.

    CAS  Google Scholar 

  • Redfield, A. C., B. H. Ketchum & F. A. Richards, 1963. The influence of organisms on the composition of sea water. In Hill, M. N. (ed.), The Sea. Wiley Interscience, New York: 26–77.

    Google Scholar 

  • Roman, M. R., A. L. Gauzens, K. Rhinehart & J. R. White, 1993. Effects of low oxygen waters on Chesapeake Bay zooplankton. Limnology and Oceanography 38: 1603–1614.

    Article  Google Scholar 

  • Rosas, C., E. Martinez, G. Gaxiola, R. Brito, A. Sanchez & L. A. Soto, 1999. The effect of dissolved oxygen and salinity on oxygen consumption, ammonia excretion and osmotic pressure of Penaeus setiferus (Linnaeus) juveniles. Journal of Experimental Marine Biology and Ecology 234: 41–57.

    Article  Google Scholar 

  • Rosenberg, R., B. Hellman & B. Johansson, 1991. Hypoxic tolerance of marine benthic fauna. Marine Ecology Progress Series 79: 127–131.

    Article  Google Scholar 

  • Sandberg, E. & E. Bonsdorff, 1996. Effects of predation and oxygen deficiency on different age classes of the amphipod Monoporeia affinis. Journal of Sea Research 35: 345–351.

    Article  Google Scholar 

  • Seager, J., I. Milne, M. Mallett & I. Sims, 2000. Effects of short-term oxygen depletion on fish. Environmental Toxicology and Chemistry 19: 2937–2942.

    Article  CAS  Google Scholar 

  • Secor, D. H. & T. E. Gunderson, 1998. Effects of hypoxia and temperature on survival, growth, and respiration of juvenile Atlantic sturgon, Acipencer oxyrinchus. Fish Bulletin 96: 603–613.

    Google Scholar 

  • Sedin, R., 2002. Bottom-level oxygen in coastal and marine waters. Swedish EPA, http://www.internat.naturvardsverket.se/documents/legal/assess/assedoc/coastdoc/bottoxy.htm.

    Google Scholar 

  • Smith, V. H., 2006. Responses of estuarine and coastal marine phytoplankton to nitrogen and phosphorus enrichment. Limnology and Oceanography 51: 377–384.

    Article  CAS  Google Scholar 

  • Smith, S. V., P. E. Damm, M. D. Skogen, R. A. Flather & J. Pätsch, 1996. An investigation into the variability of circulation and transport on the north-west European shelf using three hydrodynamic models. Deutsche Hydrographische Zeitschrift 48: 325–347.

    Article  Google Scholar 

  • Spicer, J. I., 1995. Oxygen and acid-base status of the sea urchin Psammechinus miliaris during environmental hypoxia. Marine Biology 124: 71–76.

    Article  Google Scholar 

  • Stickle, W. B., M. A. Kapper, L.-L. Liu, E. Gnaiger & S. Y. Wang, 1989. Metabolic adaptations of several species of crustaceaens and molluscs to Hypoxia: tolerance and miricalorimetric studies. Biological Bulletin 177: 303–312.

    Article  Google Scholar 

  • Tallqvist, M., K. E. Sandberg & E. Bonsdorff, 1999. Juvenile flounder, Platichthys flesus (L.), under hypoxia: effects on tolerance, ventilation rate and predation efficiency. Journal of Experimental Marine Biology and Ecology 242: 75–93.

    Article  Google Scholar 

  • Tett, P., L. Gilpin, H. Svendsen, C. P. Erlandsson, U. Larsson, S. Kratzer, E. Fouilland, C. Janzen, J.-Y. Lee, C. Grenz, A. Newton, J. G. Ferreira, T. Fernandes & S. Scory, 2003. Eutrophication and some European waters of restricted exchange. Continental Shelf Research 23: 1635–1671.

    Article  Google Scholar 

  • Theede, H., A. Ponat, K. Hiroki & C. Schlieper, 1969. Studies on the resistance of marine bottom invertebrates to oxygen deficiency and hydrogen sulphide. Marine Biology 2: 325–337.

    Article  CAS  Google Scholar 

  • Tomczak, G. & E. Goedecke, 1964. Die thermische Schichtung der Nordsee auf Grund des mittleren Jahresganges der Temperatur in 1/2Ð-und 1Ð-Feldern. Deutsche Hydrographische Zeitschrift, Ergänzungsheft B (4Ð), no. 8.

    Google Scholar 

  • Van Raaphorst, W., V.N. de Jonge, D. Dijkhuizen & B. Frederiks, 2000. Natural background concentrations of phosphorus and nitrogen in the Dutch Wadden Sea. RIKZ/2000.013, The Hague.

    Google Scholar 

  • Wajsbrot, N., A. Gasith, M. D. Krom & D. M. Popper, 1991. Acute toxicity of ammonia to juvenile gilthead seabream Sparus aurata under reduced oxygen levels. Aquaculture 92: 277–288.

    Article  CAS  Google Scholar 

  • Wang, W. X. & J. Widdows, 1991. Physiological responses of mussel larvae Mytilus edulis to environmental hypoxia and anoxia. Marine Ecology Progress Series 70: 223–236.

    Article  Google Scholar 

  • Wu, R. S. S., 2002. Hypoxia: from molecular responses to ecosystem responses. Marine Pollution Bulletin 45: 35–45.

    Article  CAS  Google Scholar 

  • Zevenboom, W., 1994. Assessment of eutrophication and its effects in marine waters. Deutsche Hydrographische Zeitschrift Supplement 1: 141–170.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Topcu, D., Brockmann, U., Claussen, U. (2009). Relationship between eutrophication reference conditions and boundary settings considering OSPAR recommendations and the Water Framework Directive—examples from the German Bight. In: Andersen, J.H., Conley, D.J. (eds) Eutrophication in Coastal Ecosystems. Developments in Hydrobiology, vol 207. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3385-7_9

Download citation

Publish with us

Policies and ethics