Skip to main content

Decontaminating Heavy Metals from Water Using Photosynthetic Microbes

  • Chapter
  • First Online:

Abstract

Elevated levels of heavy metals in our environment can pose serious problems to a wide variety of living organisms, including humans. This is because transporters in cell membranes can absorb toxic non-essential metal ions and essential metal ions to excess, both of which can deleteriously affect important metabolic processes. Organisms have responded to this threat by evolving coping mechanisms that biotransform the metals into forms possessing low toxicity. By their very nature these mechanisms also act to make metals less bioavailable in the environment, and it is this property that can be exploited for bioremediation purposes. Sulfur and its metabolism is often central to these coping mechanisms. It is absorbed by cells in the form of sulfate that in turn is converted to sulfite and subsequently into thiols via energy input and reduction. Metal ions can bind to these thiol groups in cysteine, glutathione and metallothioneins rendering them essentially detoxified. Furthermore, some organisms such as the sulfate reducing bacteria biotransform metal ions into metal sulfides that have very low solubilities and hence, very low bioavailabilities. However from the perspective of applying metal bioremediation, the sulfate reducing bacteria require anoxic environments that would be unlike the conditions associated with most anthropogenic sources of heavy metals. Recently, photosynthetic microbes have also been shown to form metal sulfides. Here, we present the potential of these microbes for the effective aerobic bioremediation of heavy metals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. MacFarlane, GR, Burchett, MD, (2001) Marine. Poll. Bull. 42, 233–240.

    Google Scholar 

  2. Groudeva, VI, Groudev, SN, Doycheva, AS, (2001) Int. J. Miner. Process. 62, 293–299.

    Google Scholar 

  3. Ratcliffe, HE, Swanson, GM, Fischer, LJ, (1996) J. Toxicol. Environ. Health. 49, 221–270.

    Google Scholar 

  4. Sataruga, S, Haswell-Elkinsa, MR, Moorea, MR, (2000) Br. J. Nutr. 84, 791–802.

    Google Scholar 

  5. Elinder, CG, Kjellström, T, Hogstedt, C, Andersson, K, Spång, G, (1985) Br. J. Ind. Med. 42, 651–656.

    Google Scholar 

  6. Garcia-Morales, P, Saceda, M, Kenney, N, Kim, N, Salomon, D, Gottardis, M, et al., (1994) J. Biol. Chem. 269, 16896–16901.

    Google Scholar 

  7. Kimura, K, Gelmann, EP, (2002) Nature 9, 972–980.

    Google Scholar 

  8. Mulligan, CN, Yong, RN, Gibbs, BF, (2001) Eng. Geol. 60, 193–207.

    Google Scholar 

  9. Bridges, CC, Zalups, RK, (2005) Toxicol. Appl. Pharmacol. 204, 274–308.

    Google Scholar 

  10. Hall, JL, (2002) J. Exp. Bot. 53, 1–11.

    Google Scholar 

  11. Eide, D, (2001) Genome Biol. 1028, 1–3.

    Google Scholar 

  12. Langston, WJ, Bebianno, MJ, (1998) Metal Metabolism in Aquatic Environments. Springer, New York , Vol. 7, 1–351.

    Google Scholar 

  13. Vijver, MG, van Gestel, CAM, Lanno, RP, van Straalen, NM, Peijnenburg, WJGM, (2004) Environ. Sci. Technol. 38, 4705–4712.

    Google Scholar 

  14. Palmiter, RD, Brinster, RL, Hammer, RE, Trumbauer, MR, Rosenfeld, MG, Birnbergs, NC, et al., (1982) Nature 300, 611–615.

    Google Scholar 

  15. Osborna, MA, Brucea, KD, Strikea, P, Ritchiea, DA, (1997) FEMS Microbiol. Rev. 19, 239–262.

    Google Scholar 

  16. Daniels, MJ, Turner-Cavet, JS, Selkirk, R, Sun, H, Parkinson, JA, Sadler, PJ, et al., (1998) J. Biol. Chem. 273, 22957–22961.

    Google Scholar 

  17. Liu, J, Liu, Y, Goyer, RA, Achanzar, W, Waalkes, MP, (2000) Toxicol. Sci. 55, 460–467.

    Google Scholar 

  18. Okubo, M, Yamada, K, Hosoyamada, M, Shibasaki, T, Endou, H, (2003) Toxicol. Appl. Pharmacol. 187, 162–167.

    Google Scholar 

  19. Wang, W, Dei, RCH, (2001) Aquat. Toxicol. 52, 39–47.

    Google Scholar 

  20. Bannon, DI, Portnoy, ME, Olivi, L, Lees, PSJ, Culotta, VC, Bressler, JP, (2002) Biochem. Biophys. Res. Commun. 295, 978–984.

    Google Scholar 

  21. Kochian, LV, Pence, NS, Letham, DLD, Pineros, MA, Magalhaes, JV, Hoekenga, OA, et al., (2002) Plant Soil. 247, 109–119.

    Google Scholar 

  22. Permina, EA, Kazakov, AE, Kalinina, OV, Gelfand, MS, (2006) BMC Microbiol. 6, 49.

    Google Scholar 

  23. Nascimento, AMA, Cursino, L, Gonçalves-Dornelas, H, Reis, A, Chartone-Souza, E, Marini, MÂ, (2003) Condor 105, 358–361.

    Google Scholar 

  24. Lefebvre, DD, Kelly, D, Budd, K, (2007) Appl. Environ. Microbiol. 73, 243–249.

    Google Scholar 

  25. Davis, TA, Volesky, B, Mucci, A, (2003) Water Res. 37, 4311–4330.

    Google Scholar 

  26. Steffens, JC, (1990) Annu. Rev. Plant Physiol. Plant Mol. Biol. 41, 553–575.

    Google Scholar 

  27. Collard, JM, Matagne, RF, (1990) Appl. Environ. Microbiol. 56, 2051–2055.

    Google Scholar 

  28. Nagel, K, Voigt, J, (1989) Appl. Environ. Microbiol. 55, 526–528.

    Google Scholar 

  29. Voigt, J, Nagel, K, (2002) J. Plant Physiol. 159, 941–950.

    Google Scholar 

  30. Shrager, J, Hauser, C, Chang, C, Harris, EH, Davies, J, McDermott, J, et al., (2003) Plant Physiol. 131, 401–408.

    Google Scholar 

  31. Yoshimura, E, Nagasaka, S, Satake, K, Mori, S, (2000) Hydrobiologia 433, 57–60.

    Google Scholar 

  32. Guida, L, Saidi, Z, Hughes, MN, Poole, RK, (1991) Arch. Microbiol. 156, 507–512.

    Google Scholar 

  33. Van Ho, A, Ward, DM, Kaplan, J, (2002) Annu. Rev. Microbiol. 56, 237–261.

    Google Scholar 

  34. Bun-ya, M, Shikata, K, Nakade, S, Yompakdee, C, Harashima, S, Oshima, Y, (1996) Curr. Genet. 29, 344–351.

    Google Scholar 

  35. Meharg, AA, Macnair, MR, (1990) New Phytol. 116, 29–35.

    Google Scholar 

  36. Williams, MJ, Ogle, RS, Knight, AW, Burau, RG, (1994) Arch. Environ. Contam. Toxicol. 27, 449–453.

    Google Scholar 

  37. Riedel, GF, Ferrier, DP, Sanders, JG, (1991) Water Air Soil Poll. 57, 23–30.

    Google Scholar 

  38. Fortin, C, Campbell, PGC, (2000) Environ. Toxicol. Chem. 19, 2769–2778.

    Google Scholar 

  39. Kertesz, MA, (2001) Res. Microbiol. 152, 279–290.

    Google Scholar 

  40. Chen, S, Wilson, DB, (1997) Biodegradation 8, 97–103.

    Google Scholar 

  41. Hussain, D, Haydon, MJ, Wang, Y, Wong, E, Sherson, SM, Young, J, et al., (2004) Plant Cell. 16, 1327–1339.

    Google Scholar 

  42. Hanikenne, M, Krämer, U, Demoulin, V, Baurain, D, (2005) Plant Physiol. 137, 428–446.

    Google Scholar 

  43. Andreesen, JR, Makdessi, K, (2008) Ann. NY Acad. Sci. 1125, 215–229.

    Google Scholar 

  44. Gueldry, O, Lazard, M, Delort, F, Dauplais, M, Grigoras, I, Blanquet, S, et al., (2003) Eur. J. Biochem. 270, 2486–2496.

    Google Scholar 

  45. Li, Z, Lu, Y, Zhen, R, Szczypka, M, Thiele, D, Rea, P, (1997) Proc. Natl. Acad. Sci. U.S.A. 94, 42–47.

    Google Scholar 

  46. Hiriart-Baer, VP, Fortin, C, Lee, D, Campbell, PGC, (2006) Aquat. Toxicol. 78, 136–148.

    Google Scholar 

  47. Pinto, E, Sigaud-kutner, TC, Leitão, MA, Okamoto, OK, Morse, D, Colepicolo, P, (2003) J. Phycol. 39, 1008–1018.

    Google Scholar 

  48. Pollock, SV, Pootakham, W, Shibagaki, N, Moseley, JL, Grossman, AR, (2005) Photosynth. Res. 86, 475–489.

    Google Scholar 

  49. Smith, FW, Hawkesford, MJ, Prosser, IM, Clarkson, DT, (1995) Mol. Gen. Genet. 247, 709–715.

    Google Scholar 

  50. Takahashi, H, Yamazaki, M, Sasakura, N, Watanabe, A, Leustek, T, Engler, JDA, et al., (1997) Proc. Natl. Acad. Sci. U.S.A. 94, 11102–11107.

    Google Scholar 

  51. Hawkseford, MJ, De Kok, LJ, (2006) Plant Cell Environ. 29, 382–395.

    Google Scholar 

  52. Leustek, T, Martin, MN, Bick, J, Davies, JP, (2000) Annu. Rev. Plant Physiol. Plant Mol. Biol. 51, 141–165.

    Google Scholar 

  53. Davies, JP, Yildiz, FH, Grossman, A, (1996) EMBO J. 15, 2150–2159.

    Google Scholar 

  54. Giordano, M, Norici, A, Hell, R, (2005) New Phytol. 166, 371–382.

    Google Scholar 

  55. Rauser, WE, (1999) Cell Biochem. Biophys. 31, 19–48.

    Google Scholar 

  56. Scarano, G, Morelli, E, (2003) Plant Sci. 165, 803–810.

    Google Scholar 

  57. Perales-Vela, HV, Peña-Castro, JM, Cañizares-Villanueva, RO, (2006) Chemosphere 64, 1–10.

    Google Scholar 

  58. Schäfer, HJ, Greiner, S, Rausch, T, Haag-Kerwer, A, (1997) FEBS Lett. 404, 216–220.

    Google Scholar 

  59. Cavet, JS, Graham, AI, Meng, W, Robinson, NJ, (2003) J. Biol. Chem. 278, 44560–44566.

    Google Scholar 

  60. Gekeler, W, Grill, E, Winnacker, EL, Zenk, MH, (1988) Arch. Microbiol. 150, 197–202.

    Google Scholar 

  61. Turner, J, Morby, A, Whitton, B, Gupta, A, Robinson, N, (1993) J. Biol. Chem. 268, 4494–4498.

    Google Scholar 

  62. Blindauer, CA, Sadler, PJ, Harrison, MD, Borrelly, GPM, Schmid, R, Robinson, NJ, (2003) J. Inorg. Biochem. 96, 102–102.

    Google Scholar 

  63. Grill, E, Löffler, S, Winnacker, E, Zenk, MH, (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 6838–6842.

    Google Scholar 

  64. Vatamaniuk, OK, Mari, S, Lang, A, Chalasani, S, Demkiv, LO, Rea, PA, (2004) J. Biol. Chem. 279, 22449–22460.

    Google Scholar 

  65. Cobbett, C, Goldsbrough, P, (2002) Annu. Rev. Plant Biol. 53, 159–182.

    Google Scholar 

  66. Ha, S, Smith, AP, Howden, R, Dietrich, WM, Bugg, S, O‘Connell, MJ, et al., (1999) Plant Cell. 11, 1153–1164.

    Google Scholar 

  67. Vatamaniuk, OK, Mari, S, Lu, Y, Rea, PA, (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 7110–7115.

    Google Scholar 

  68. Clemens, S, Kim, EJ, Neumann, D, Schroeder, JI, (1999) EMBO J. 18, 3325–3333.

    Google Scholar 

  69. Howden, R, Goldsbrough, PB, Andersen, CR, Cobbett, CS, (1995) Plant Physiol. 107, 1059–1066.

    Google Scholar 

  70. Lee, JG, Ahner, BA, Morel, FMM, (1996) Environ. Sci. Technol. 30, 1814–1821.

    Google Scholar 

  71. El-Enany, AE, Issa, AA, (2000) Toxicol. Appl. Pharmacol. 8, 95–101.

    Google Scholar 

  72. Bierkens, J, Maes, J, Plaetse, FV, (1998) Environ. Pollut. 101, 91–97.

    Google Scholar 

  73. Torres, E, Cid, A, Fidalgo, P, Herrero, C, Abalde, J, (1997) Aquat. Toxicol. 39, 231–246.

    Google Scholar 

  74. Vande Weghe, JG, Ow, DW, (1999) J. Biol. Chem. 274, 13250–13257.

    Google Scholar 

  75. Kelly, D, Budd, K, Lefebvre, DD, (2006) Appl. Environ. Microbiol. 72, 361–367.

    Google Scholar 

  76. Heuillet, E, Moreau, A, Halpern, S, (1986) Biol. Cell. 58, 79–85.

    Google Scholar 

  77. Ortiz, DF, Ruscitti, T, McCue, KF, Ow, DW, (1995) J. Biol. Chem. 270, 4721–4728.

    Google Scholar 

  78. Ballan-Dufrançais, C, Marcaillou, C, Amiard-Triquet, C, (1991) Biol. Cell. 72, 103–112.

    Google Scholar 

  79. Hammouda, O, Gaber, A, Abdel-Hameed, MS, (1995) Enzyme Microb. Technol. 17, 317–323.

    Google Scholar 

  80. Nassiri, Y, Wéry, J, Mansot, JL, Ginsburger-Vogel, T, (1997) Arch. Environ. Contam. Toxicol. 33, 156–161.

    Google Scholar 

  81. Mendoza-Cozatl, D, Loza-Tavera, H, Hernandez-Navarro, A, Moreno-Sanchez, R, (2004) FEMS Microbiol. Rev. 29, 653–671.

    Google Scholar 

  82. Nagel, K, Adelmeier, U, Voigt, J, (1996) J. Plant Physiol. 149, 86–90.

    Google Scholar 

  83. Pawlik-Skowronska, B, (2000) Aquat. Toxicol. 50, 221–230.

    Google Scholar 

  84. Conner, SD, Schmid, SL, (2003) Nature 422, 37–44.

    Google Scholar 

  85. Winterbourn, CC, (1982) Biochem. J. 207, 609–612.

    Google Scholar 

  86. Sies, H, (1990) Eur. J. Pharmacol. 183, 49–50.

    Google Scholar 

  87. Gallego, SM, Benavídes, MP, Tomaro, ML, (1996) Plant Sci. 121, 151–159.

    Google Scholar 

  88. Foyer, CH, Vanacker, H, Gomez, LD, Harbinson, J, (2002) Plant Physiol. Biochem. 40, 659–668.

    Google Scholar 

  89. Holovská, K, Lenártová, V, Pedrajas, JR, Peinado, J, López-Barea, J, Rosival, I, et al., (1996) Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 115, 451–456.

    Google Scholar 

  90. Okamoto, OK, Asano, CS, Aidar, E, Colepicolo, P, (1996) J. Phycol. 32, 74–79.

    Google Scholar 

  91. Okamoto, OK, Pinto, E, Latorre, LR, Bechara, EJH, Colepicolo, P, (2001) Arch. Environ. Contam. Toxicol. 40, 18–24.

    Google Scholar 

  92. Lefebvre, DD, Miki, BL, Laliberte, JF, (1987) Biotechnology 5, 1053–1056.

    Google Scholar 

  93. Chen, Z, Ren, L, Shao, Q, Shi, D, Ru, B, (1999) Mar. Pollut. Bull. 39, 155–158.

    Google Scholar 

  94. Tsuji, N, Nishikori, S, Iwabe, O, Shiraki, K, Miyasaka, H, Takagi, M, et al., (2004) Biochem. Biophys. Res. Commun. 315, 751–755.

    Google Scholar 

  95. Kelly, DJA, Budd, K, Lefebvre, DD, (2007) Arch. Microbiol. 187, 45–53.

    Google Scholar 

  96. Craggs, RJ, Adey, WH, Jenson, KR, St. John, MS, Green, FB, Oswald, WJ, (1996) Water Sci. Technol. 33, 191–198.

    Google Scholar 

  97. Jong, T, Parry, DL, (2003) Water Res. 37, 3379–3389.

    Google Scholar 

  98. Lloyd, JR, Mabbett, AN, Williams, DR, Macaskie, LE, (2001) Hydrometallurgy 59, 327–337.

    Google Scholar 

  99. Utgikar, VP, Harmon, SM, Chaudhary, N, Tabak, HH, Govind, R, Haines, JR, (2002) Environ. Toxicol. 17, 40–48.

    Google Scholar 

  100. Valls, M, de Lorenzo, V, (2002) FEMS Microbiol. Rev. 26, 327–338.

    Google Scholar 

  101. Kelly, DJA, Budd, K, Lefebvre, DD, (2006) Can. J. Bot. 84, 254–260.

    Google Scholar 

  102. Gross, W, Küver, J, Tischendorf, G, Bouchaala, N, BÜsch, W, (1998) Eur. J. Phycol. 33, 25–31.

    Google Scholar 

  103. Gross, W, Oesterhelt, C, (1999) Plant Biol. 1, 694–700.

    Google Scholar 

  104. Eccles, H, (1999) Trends Biotechnol. 17, 462–465.

    Google Scholar 

  105. Wagner-Döbler, I, (2003) Appl. Microbiol. Biotechnol. 62, 124–133.

    Google Scholar 

  106. Deckwer, W-, Becker, FU, Ledakowicz, S, Wagner-Dobler, I, (2004) Environ. Sci. Technol. 38, 1858–1865.

    Google Scholar 

  107. Brunke, M, Deckwer, WD, Frischmuth, A, Horn, JM, Lünsdorf, H, Rhode, M, et al., (2006) FEMS Microbiol. Rev. 11, 145–152.

    Google Scholar 

  108. von Canstein, H, Li, Y, Wagner-Döbler, I, (2001) Biotechnol. Bioeng. 74, 212–219.

    Google Scholar 

  109. Barkay, T, Miller, SM, Summers, AO, (2003) FEMS Microbiol. Rev. 27, 355–384.

    Google Scholar 

  110. Volesky, B, Holant, ZR, (1995) Biotechnol. Prog. 11, 235–250.

    Google Scholar 

  111. Elliott, P, Ragusa, S, Catcheside, D, (1998) Water Res. 32, 3724–3730.

    Google Scholar 

  112. Gadd, GM, (2004) Geoderma 122, 109–119.

    Google Scholar 

  113. Nakamura, K, Hagimine, M, Sakai, M, Furukawa, K, (1999) Biodegradation 10, 443–447.

    Google Scholar 

  114. Iohara, K, Iiyama, R, Nakamura, K, Silver, S, Sakai, M, Takeshita, M, et al., (2001) Appl. Microbiol. Biotechnol. 56, 736–741.

    Google Scholar 

  115. Brim, H, McFarlan, SC, Fredrickson, JK, Minton, W, Zhai, M, Wackette, WP, et al., (2000) Nat. Biotechnol. 18, 85–90.

    Google Scholar 

  116. Brim, H, Venkateswaran, A, Kostandarithes, HM, Fredrickson, JHK, Daly, MJ, (2003) Appl. Environ. Microbiol. 69, 4575–4582.

    Google Scholar 

  117. Naja, G, Volesky, B, (2006) Colloids Surf. A 281, 194–201.

    Google Scholar 

  118. Micheletti, E, Pereira, S, Mannelli, F, Moradas-Ferreira, P, Tamagnini, P, De Philippis, R, (2008) Appl. Environ. Microbiol. 74, 2797–2804.

    Google Scholar 

  119. Philippis, R, Paperi, R, Sili, C, (2007) Biodegradation 18, 181–187.

    Google Scholar 

  120. Paperi, R, Micheletti, E, De Philippis, R, (2006) J. Appl. Microbiol. 101, 1351–1356.

    Google Scholar 

  121. Chen, P, Greenberg, B, Taghavi, S, Omano, C, van der Lelie, D, He, C, (2005) Angew. Chem. Int. Ed. 44, 2–6.

    Google Scholar 

  122. Chojnacka, K, Chojnacki, A, Górecka, H, (2005) Chemosphere 59, 75–84.

    Google Scholar 

  123. Barbier, G, Oesterhelt, C, Larson, MD, Halgren, RG, Wilkerson, C, Garavito, RM, et al., (2005) Plant Physiol. 137, 460–474.

    Google Scholar 

  124. Dameron, C, Smith, B, Winge, D, (1989) J. Biol. Chem. 264, 17355–17360.

    Google Scholar 

  125. Kneer, R, Zenk, MH, (1997) Phytochemistry 44, 69–74.

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Natural Sciences and Engineering Research Council (Canada) for supporting their research in metal bioremediation. Valuable advice on the manuscript from two anonymous reviewers is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel D. Lefebvre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lefebvre, D.D., Edwards, C. (2010). Decontaminating Heavy Metals from Water Using Photosynthetic Microbes. In: Shah, V. (eds) Emerging Environmental Technologies, Volume II. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3352-9_3

Download citation

Publish with us

Policies and ethics