Skip to main content

Roles of MicroRNAs in Plant Abiotic Stress

  • Chapter
  • First Online:

Abstract

Regulation of microRNAs (miRNAs) in response to abiotic stresses constitutes a major part of the biology of plant miRNAs. In this chapter, we exclusively review the current progress in the study of roles of miRNAs in plant abiotic stresses. The responses of various miRNAs to different types of abiotic stresses are discussed in detail. Finally, the perspective for application of the related studies and the future of plant biology are briefly presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allen E, Xie ZX, Gustafson AM, Carrington JC 2005 MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221

    Article  CAS  PubMed  Google Scholar 

  • Allen RS, Li JY, Stahle MI, Dubroue A, Gluber F, Millar AA 2007 Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family. Proc Natl Acad Sci USA 104:16371–16376

    Article  CAS  PubMed  Google Scholar 

  • Apel K, Hirt H 2004 Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Aung K, Lin SI, Wu CC, Huang YT, Su CL, Chiou TJ 2006 pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiol 141:1000–1011

    Article  CAS  PubMed  Google Scholar 

  • Bari R, Pant BD, Stitt M, Scheible WR 2006 PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol 141:988–999

    Article  CAS  PubMed  Google Scholar 

  • Bates TR, Lynch JP 2001 Root hairs confer a competitive advantage under low phosphorus availability. Plant Soil 236:243–250

    Article  CAS  Google Scholar 

  • Beardsell MF, Cohen D 1975 Relationships between leaf water status, abscisic-acid levels, and stomatal resistance in maize and sorghum. Plant Physiol 56:207–212

    Article  CAS  PubMed  Google Scholar 

  • Bonnet E, Wuyts J, Rouze P, Van de Peer Y 2004 Detection of 91 potential in plant conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proc Natl Acad Sci USA 101:11511–11516

    Article  CAS  PubMed  Google Scholar 

  • Borsani O, Zhu JH, Verslues PE, Sunkar R, Zhu JK 2005 Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123:1279–1291

    Article  CAS  PubMed  Google Scholar 

  • Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O 2008 Widespread Translational inhibition by plant miRNAs and siRNAs. Science 320:1185–1190

    Article  CAS  PubMed  Google Scholar 

  • Burleigh SH, Harrison MJ 1997 A novel gene whose expression in Medicago truncatula roots is suppressed in response to colonization by vesicular-arbuscular mycorrhizal (VAM) fungi and to phosphate nutrition. Plant Mol Biol 34:199–208

    Article  CAS  PubMed  Google Scholar 

  • Burleigh SH, Harrison MJ 1999 The down-regulation of Mt4-like genes by phosphate fertilization occurs systemically and involves phosphate translocation to the shoots. Plant Physiol 119:241–248

    Article  CAS  PubMed  Google Scholar 

  • Burleigh SM, Harrison MJ 1998 Characterization of the Mt4 gene from Medicago truncatula. Gene 216:47–53

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I 2008 Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302:1–17

    Article  CAS  Google Scholar 

  • Chen X 2004 A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022–2025

    Article  CAS  PubMed  Google Scholar 

  • Chiou TJ 2007 The role of microRNAs in sensing nutrient stress. Plant Cell Environ 30:323–332

    Article  CAS  PubMed  Google Scholar 

  • Chiou TJ, Aung K, Lin SI, Wu CC, Chiang SF, Su CL 2006 Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell 18:412–421

    Article  CAS  PubMed  Google Scholar 

  • Dat J, Vandenabeele S, Vranova E, Van Montagu M, Inze D, Van Breusegem F 2000 Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    Article  CAS  PubMed  Google Scholar 

  • Delhaize E, Randall PJ 1995 Characterization of a phosphate-accumulator mutant of Arabidopsis-Thaliana. Plant Physiol 107:207–213

    CAS  PubMed  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Estelle M 2005 The F-box protein TIR1 is an auxin receptor. Nature 435:441–445

    Article  CAS  PubMed  Google Scholar 

  • Dolferus R, Klok EJ, Delessert C, Wilson S, Ismond KP, Good AG, Peacock WJ, Dennis ES 2003 Enhancing the anaerobic response. Ann Bot Lond 91:111–117

    Article  CAS  Google Scholar 

  • Franco-Zorrilla JM, Gonzalez E, Bustos R, Linhares F, Leyva A, Paz-Ares J 2004 The transcriptional control of plant responses to phosphate limitation. J Exp Botany 55:285–293

    Article  CAS  Google Scholar 

  • Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, Garcia JA, Paz-Ares J 2007 Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39:1033–1037

    Article  CAS  PubMed  Google Scholar 

  • Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK 2005 A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol 15:2038–2043

    Article  CAS  PubMed  Google Scholar 

  • Han MH, Goud S, Song L, Fedoroff N 2004 The Arabidopsis double-stranded RNA-binding protein HYL1 plays a role in microRNA-mediated gene regulation. Proc Natl Acad Sci USA 101:1093–1098

    Article  CAS  PubMed  Google Scholar 

  • Jia X, Ren L, Chen QJ, Li R, Tang G 2009 UV-B responsive microRNAs in Populus tremula. J of Plant Physiol (in press)”

    Article  CAS  PubMed  Google Scholar 

  • Jia X, Wang, WX, Ren L, Chen QJ, Mendu V, Willcut B, Dinkins R, Tang X, Tang G 2009 Differential and dynamic regulation of miR398 and its targets in response to ABA and salt stress in Populus tremula and Arabidopsis thaliana. Plant Mol Biol 71: 51–59

    Article  CAS  PubMed  Google Scholar 

  • Jones-Rhoades MW, Bartel DP 2004 Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799

    Article  CAS  PubMed  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B 2006 MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  CAS  PubMed  Google Scholar 

  • Jung HJ, Kang H 2007 Expression and functional analyses of microRNA417 in Arabidopsis thaliana under stress conditions. Plant Physiol Biochem 45:805–811

    Article  CAS  PubMed  Google Scholar 

  • Kepinski S, Leyser O 2005 The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446–451

    Article  CAS  PubMed  Google Scholar 

  • Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ 2006 Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot Lond 98:693–713

    Article  Google Scholar 

  • Lappartient AG, Touraine B 1996 Demand-driven control of root ATP sulfurylase activity and SO42- uptake in intact canola - The role of phloem-translocated glutathione. Plant Physiol 111:147–157

    CAS  PubMed  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V 1993 The C-Elegans Heterochronic Gene Lin-4 encodes small RNAs with Antisense Complementarity to Lin-14. Cell 75:843–854

    Article  CAS  PubMed  Google Scholar 

  • Liu CM, Muchhal US, Raghothama KG 1997 Differential expression of TPS11, a phosphate starvation-induced gene in tomato. Plant Mol Biol 33:867–874

    Article  CAS  PubMed  Google Scholar 

  • Liu PP, Montgomery TA, Fahlgren N, Kasschau KD, Nonogaki H, Carrington JC 2007 Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. Plant J 52:133–146

    Article  CAS  PubMed  Google Scholar 

  • Llave C, Kasschau KD, Rector MA, Carrington JC 2002 Endogenous and silencing-associated small RNAs in plants. Plant Cell 14:1605–1619

    Article  CAS  PubMed  Google Scholar 

  • Lough TJ, Lucas WJ 2006 Integrative plant biology: role of phloem long-distance macromolecular trafficking. Annu Rev Plant Biol 57:203–232

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Fedoroff N 2000 A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin. Plant Cell 12:2351–2365

    Article  CAS  PubMed  Google Scholar 

  • Lu SF, Sun YH, Shi R, Clark C, Li LG, Chiang VL 2005 Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 17:2186–2203

    Article  CAS  PubMed  Google Scholar 

  • Lynch JP, Brown KM 2001 Topsoil foraging - An architectural adaptation of plants to low phosphorus availability. Plant Soil 237:225–237

    Article  CAS  Google Scholar 

  • Mallory AC, Vaucheret H 2006 Functions of microRNAs and related small RNAs in plants. Nat Genet 38:S31–S36

    Article  Google Scholar 

  • Marschner H 1995 Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Martin AC, del Pozo JC, Iglesias J, Rubio V, Solano R, de la Pena A, Leyva A, Paz-Ares J 2000 Influence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis. Plant J 24:559–567

    Article  CAS  PubMed  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JDG 2006 A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    Article  CAS  PubMed  Google Scholar 

  • Pant BD, Buhtz A, Kehr J, Scheible WR 2008 MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J 53:731–738

    Article  CAS  PubMed  Google Scholar 

  • Park W, Li JJ, Song RT, Messing J, Chen XM 2002 CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol 12:1484–1495

    Article  CAS  PubMed  Google Scholar 

  • Quinn JM, Merchant S 1995 2 Copper-responsive elements associated with the Chlamydomonas Cyc6 gene-function as targets for transcriptional activators. Plant Cell 7:623–638

    Article  CAS  PubMed  Google Scholar 

  • Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP 2002 MicroRNAs in plants. Genes Dev 16:1616–1626

    Article  CAS  PubMed  Google Scholar 

  • Reyes JL, Chua NH 2007 ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J 49:592–606

    Article  CAS  PubMed  Google Scholar 

  • Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP 2002. Prediction of plant microRNA targets. Cell 110:513–520

    Article  CAS  PubMed  Google Scholar 

  • Rubio V, Linhares F, Solano R, Martin AC, Iglesias J, Leyva A, Paz-Ares J 2001 A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Dev 15:2122–2133

    Article  CAS  PubMed  Google Scholar 

  • Saab IN, Sharp RE, Pritchard J, Voetberg GS 1990 Increased endogenous abscisic-acid maintains primary root-growth and inhibits shoot growth of maize seedlings at low water potentials. Plant Physiol 93:1329–1336

    Article  CAS  PubMed  Google Scholar 

  • Shin H, Shin HS, Chen R, Harrison MJ 2006 Loss of At4 function impacts phosphate distribution between the roots and the shoots during phosphate starvation. Plant J 45:712–726

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Zhu JK 2004 Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    Article  CAS  PubMed  Google Scholar 

  • Sunkar R, Kapoor A, Zhu JK 2006 Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065

    Article  CAS  PubMed  Google Scholar 

  • Taiz La, Zeiger E 2002 Plant physiology, 3rd edn. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Takahashi H, Yamazaki M, Sasakura N, Watanabe A, Leustek T, Engler JD, Engler G, VanMontagu M, Saito K 1997 Regulation of sulfur assimilation in higher plants: a sulfate transporter induced in sulfate-starved roots plays a central role in Arabidopsis thaliana. Proc Natl Acad Sci USA 94:11102–11107

    Article  CAS  PubMed  Google Scholar 

  • Tang G, Tang X, Mendu V, Jia X, Chen QJ, He L 2008 The art of microRNA: various strategies leading to gene silencing via an ancient pathway. Biochim Biophys Acta 1779:655–662

    CAS  PubMed  Google Scholar 

  • Tang GL 2005 siRNA and miRNA: An insight into RISCs. Trends Biochem Sci 30:106–114

    Article  CAS  PubMed  Google Scholar 

  • Vaucheret H 2005 MicroRNA-dependent trans-acting siRNA production. Sci STKE 2005(300): pe43

    Article  CAS  PubMed  Google Scholar 

  • Vazquez F, Gasciolli V, Crete P, Vaucheret H 2004 The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not posttranscriptional transgene silencing. Curr Biol 14:346–351

    CAS  PubMed  Google Scholar 

  • Wasaki J, Yonetani R, Shinano T, Kai M, Osaki M 2003 Expression of the OsPI1 gene, cloned from rice roots using cDNA microarray, rapidly responds to phosphorus status. New Phytol 158:239–248

    Article  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K 2005 Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10:88–94

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki H, Abdel-Ghany SE, Cohu CM, Kobayashi Y, Shikanai T, Pilon M 2007 Regulation of copper homeostasis by micro-RNA in Arabidopsis. J Biol Chem 282:16369–16378

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Wei L, Zou X, Tao Y, Liu Z, Zheng Y 2008 Submergence-responsive microRNAs are potentially involved in the regulation of morphological and metabolic adaptations in maize root cells. Ann Bot 102:509–519

    Article  CAS  PubMed  Google Scholar 

  • Zhao BT, Liang RQ, Ge LF, Li W, Xiao HS, Lin HX, Ruan KC, Jin YX 2007 Identification of drought-induced microRNAs in rice. Biochem Biophys Res Commun 354:585–590

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

G.T. is supported by the Kentucky Tobacco Research and Development Center (KTRDC), the USDA-NRI grants 2006-35301-17115 and 2006-35100-17433, the NSF MCB-0718029 (Subaward No. S-00000260), and an award from the Kentucky Science and Technology Corporation, under the Contract # KSTC-144-401-08-029.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guiliang Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lewis, R., Mendu, V., Mcnear, D., Tang, G. (2010). Roles of MicroRNAs in Plant Abiotic Stress. In: Jain, S., Brar, D. (eds) Molecular Techniques in Crop Improvement. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2967-6_15

Download citation

Publish with us

Policies and ethics