Skip to main content
Book cover

Lost Sex pp 75–97Cite as

A Graphical Approach to Lineage Selection Between Clonals and Sexuals

  • Chapter
  • First Online:

Abstract

Theories for the evolutionary advantages and disadvantages of sex address two fundamentally different questions: (i) Why does the genome of sexual lineages not “congeal,” (i.e., move toward a lowered recombination rate)?, and (ii) When there is a mixture of reproductively isolated clonal and sexual lineages, why do the clonals not accumulate and lead to a predominance of asexual reproduction within a clade? Here, we focus on the latter question. The relevant theory in this case is necessarily based on a special form of “lineage” selection between sexuals and clonals that do not share a common gene pool. We first briefly review the major genetic costs and benefits of clonal reproduction and conclude that the extant assemblage of theories provides an essentially complete description of the phenomenon. We next set out to combine and simplify these seemingly disparate theories by graphically representing the frameworks previously developed by Felsenstein (Genetics 78: 737–756, 1974) and Kimura and Maruyama (Genetics 54: 1337–1351, 1966) to show that the all of the proposed disadvantages to clonal reproduction can be expressed by a single factor: a decreased efficiency of natural selection in non-recombining lineages. This reduced efficiency derives from two distinct processes that only operate in clonal lineages: (i) background-trapping and (ii) the compensatory linkage disequilibrium that accrues in response to epistatic selection.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arnqvist G, Rowe L (2005). Sexual conflict. Princeton University Press, Princeton

    Google Scholar 

  • Barton NH (1995) Linkage and the limits to natural selection. Genetics 140: 821–841

    PubMed  CAS  Google Scholar 

  • Bell G (1982) The masterpiece of nature: the evolution and genetics of sexuality. Croom Helm and University of California Press, London and Berkeley

    Google Scholar 

  • Beerenwinkel N, Pachter L, Sturmfels B, Elena SF, Lenski RE (2007) Analysis of epistatic interactions and fitness landscapes using a new geometric approach. BMC Evol Biol 7: 60

    Article  PubMed  Google Scholar 

  • Burt A (2000) Perspective: sex, recombination, and the efficacy of selection – was Weismann right? Evolution 54: 337–351

    PubMed  CAS  Google Scholar 

  • Burt A, Bell G, Harvey PH (1991) Sex differences in recombination. J Evol Biol 4: 259–277

    Article  Google Scholar 

  • Burt A, Trivers R (2006) Genes in conflict: the biology of selfish genetic elements. Belknap Press, Cambridge, MA

    Google Scholar 

  • Butlin RK, Griffiths HI (1993) Ageing without sex? Nature 364: 680

    Article  Google Scholar 

  • Chapman T, Liddle LF, Kalb JM, Wolfner MF, Partridge L (1995) Cost of mating in Drosophila melanogaster females is mediated by male accessory gland products. Nature 373: 241–244

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B (1994) The effect of background selection against deleterious mutations on weakly selected, linked variants. Genet Res 63: 213–227

    Article  PubMed  CAS  Google Scholar 

  • Clarke DK, Duarte EA, Elena SF, Moya A, Domingo E, Holland JJ (1994) The Red Queen reigns in the kingdom of RNA viruses. Proc Natl Acad Sci USA 91: 4821–4824

    Article  PubMed  CAS  Google Scholar 

  • Crow JF, Kimura M (1970) An introduction to population genetic theory. Harper and Row, New York

    Google Scholar 

  • Elena SF, Lenski RE (1997) Test of synergistic interactions among deleterious mutations in bacteria. Nature 390: 395–398

    Article  PubMed  CAS  Google Scholar 

  • Eyre-Walker A, Woolfit M, Phelps T (2006) The distribution of fitness effects of new deleterious amino acid mutations in humans. Genetics 173: 891–900

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1974) Evolutionary advantage of recombination. Genetics 78: 737–756

    PubMed  CAS  Google Scholar 

  • Fisher RA (1930) The genetical theory of natural selection. Oxford University Press, Oxford

    Google Scholar 

  • Fowler K, Partridge L (1989) A cost of mating in female fruitflies. Nature 338: 760–761

    Article  Google Scholar 

  • Gerrish PJ, Lenski RE (1998) The fate of competing beneficial mutations in an asexual population. Genetica 102–103: 127–144

    Article  Google Scholar 

  • Haag-Liautard C, Dorris M, Maside X, Macaskill S, Halligan DL, Charlesworth B, Keightley PD (2007) Direct estimation of per nucleotide and genomic deleterious mutation rates in Drosophila. Nature 445: 82–85

    Article  PubMed  CAS  Google Scholar 

  • Hamilton WD (1980) Sex versus non-sex versus parasite. Oikos 35: 282–290

    Article  Google Scholar 

  • Jaenike J (1978) A hypothesis to account for the maintenance of sex within populations. Evol Theory 3: 191–194

    Google Scholar 

  • Keightley PD, Otto SP (2006) Interference among deleterious mutations favours sex and recombination in finite populations. Nature 443: 89–92

    Article  PubMed  CAS  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Kimura M, Maruyama T (1966) Mutational load with epistatic gene interactions in fitness. Genetics 54: 1337–1351

    PubMed  Google Scholar 

  • Kondrashov AS (1988) Deleterious mutations and the evolution of sexual reproduction. Nature 336: 435–440

    Article  PubMed  CAS  Google Scholar 

  • Kondrashov AS (1993) Classification of hypotheses on the advantage of amphimixis. J Hered 84: 372–387

    PubMed  CAS  Google Scholar 

  • Lattorff HMG, Moritz RFA, Fuchs S (2005) A single locus determines thelytokous parthenogenesis of laying honeybee workers (Apis mellifera capensis). Heredity 94: 533–537

    Article  PubMed  CAS  Google Scholar 

  • Li W-H (1978) Maintenance of genetic variability under joint effect of mutation, selection and random drift. Genetics 90: 349–382

    PubMed  Google Scholar 

  • Lively CM, Lloyde DG (1990) The cost of biparental sex under individual selection. Am Nat 135: 489–500

    Article  Google Scholar 

  • Manning JT (1983) The consequences of mutation in multiclonal asexual species. Heredity 50: 15–19

    Article  Google Scholar 

  • Maynard Smith J (1978) The Evolution of sex. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Muller HJ (1932) Some genetic aspects of sex. Am Nat 66: 118–138

    Article  Google Scholar 

  • Muller HJ (1964) The relation of recombination to mutational advance. Mutat Res 1: 2–9

    Google Scholar 

  • Otto SP, Lenormand T (2002) Resolving the paradox of sex and recombination. Nat Rev Genet 3: 252–261

    Article  PubMed  CAS  Google Scholar 

  • Parker GA (1979) Sexual selection and sexual conflict. In: Blum MS and Blum NA (eds) Sexual selection and reproductive competition in insects. Academic Press, New York, pp. 123–166

    Google Scholar 

  • Peck JR (1994) A ruby in the rubbish: beneficial mutations, deleterious mutations and the evolution of sex. Genetics 137: 597–606

    PubMed  CAS  Google Scholar 

  • Rice WR (1983) Parent-offspring pathogen transmission: a selective agent promoting sexual recombination. Am Nat 121: 187–203

    Article  Google Scholar 

  • Rice WR (1987) Genetic hitch-hiking and the evolution of reduced genetic activity of the Y sex chromosome. Genetics 116: 161–167

    PubMed  CAS  Google Scholar 

  • Rice WR (1996a) Sexually antagonistic male adaptation triggered by experimental arrest of female evolution. Nature 361: 232–234

    Article  Google Scholar 

  • Rice WR (1996b) Evolution of the Y sex chromosome in animals. BioScience 46: 331–343

    Article  Google Scholar 

  • Rice WR (1998) Requisite load, pathway epistasis, and deterministic mutation accumulation in sexual versus asexual populations. Genetica 102–103: 71–81

    Article  Google Scholar 

  • Rice WR, Chippindale AK (2001) Sexual recombination and the power of natural selection. Science 294: 555–559

    Article  PubMed  CAS  Google Scholar 

  • Rice WR, Holland B (1997) The enemies within: intergenomic conflict, interlocus contest evolution (ICE), and the intraspecific Red Queen. Behav Ecol Sociobiol 41: 1–10

    Article  Google Scholar 

  • Rice WR, Linder JE,Friberg U, Lew TA, Morrow EH, Stewart AD (2005) Inter-locus antagonistic coevolution as an engine of speciation: assessment with hemiclonal analysis. Proc Natl Acad Sci USA 102 (Suppl. 1): 6527–6534

    Article  PubMed  CAS  Google Scholar 

  • Rice WR, Stewart AD, Morrow EH, Linder JE, Orteiza N, Byrne PG (2006) Assessing sexual conflict in the Drosophila melanogaster laboratory model system. Philos Trans R Soc Biol 361: 287–299

    Article  Google Scholar 

  • Rowe L, Arnqvist G, Sih A, Krupa JJ (1994) Sexual conflict and the evolutionary ecology of mating patterns: water striders as a model system. Trends Ecol Evol 9: 289–293

    Article  Google Scholar 

  • Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New York

    Google Scholar 

  • Van Valen L (1973) A new evolutionary law. Evol Theory 1: 1–30

    Google Scholar 

  • Vijverberg K, Van der Hulst RGM, Lindhout P, Van Dijk PJ (2004) A genetic linkage map of the diplosporous chromosomal region in Taraxacum officinale (common dandelion; Asteraceae). Theor Appl Genet 108: 725–732

    Article  PubMed  CAS  Google Scholar 

  • Welch DM, Meselson M (2000) Evidence for the evolution of bdelloid rotifers without sexual reproduction or genetic exchange. Science 288: 1211–1215

    Article  CAS  Google Scholar 

  • Werren JH (1997) Biology of Wolbachia. Annu Rev Entomol 42: 587–609

    Article  PubMed  CAS  Google Scholar 

  • West SA, Lively CM, Read AF (1999) A pluralist approach to sex and recombination. J Evol Biol 12: 1003–1012

    Article  Google Scholar 

  • Westwood MN (1993) Temperate-zone pomology, physiology and culture. Timber Press, Portland, Oregon

    Google Scholar 

  • White MJD (1973) Animal cytology and evolution, 3rd ed. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • White MJD (1978) Modes of speciation. WH Freeman, San Francisco

    Google Scholar 

  • Williams GC (1975) Sex and evolution. Princeton University Press, New Jersey

    Google Scholar 

Download references

Acknowledgements

WRR was supported by grants from the National Science Foundation (DEB-0128780 and DEB-0111613) and UF by a stipend from Lennader’s foundation and a fellowship from the Wenner-Gren Foundations. We thank K. Schoenrock for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William R. Rice .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Rice, W.R., Friberg, U. (2009). A Graphical Approach to Lineage Selection Between Clonals and Sexuals. In: Schön, I., Martens, K., Dijk, P. (eds) Lost Sex. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2770-2_5

Download citation

Publish with us

Policies and ethics