Skip to main content

On Fundamental Concept of Structural Collapse Simulation Taking Into Account Uncertainty Phenomena

  • Conference paper
Damage Assessment and Reconstruction after War or Natural Disaster

The simulation of controlled structural collapse using explosives faces the problem of the quantification of structural parameters. The latter has to be accomplished on the basis of only few data, which may additionally be characterized by vagueness, e.g. due to uncertain measurements or changing reproduction conditions. This uncertainty has to be taken into account within a consistent analysis. As the simulation of collapses of real world structures with conventional finite element models requires extreme computational effort, this paper addresses an efficient approach for the simulation of structural collapse based on consistently simplified multibody models, that simultaneously allow for the investigation of uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alefeld, G. and Herzberger, J. (1983) Introduction to Interval Computations, New York: Academic Press.

    MATH  Google Scholar 

  • Astaneh-Asl, A., Progressive collapse prevention in new and existing buildings. Emerging Technologies in Structural Engineering. In Proceedings of the 9th Arab Structural Engineering Conference, Abu Dhabi, U.A.E, November 29-December 1, 2003, 1001– 1008.

    Google Scholar 

  • Bandemer, H. and Gottwald, S. (1995) Fuzzy Sets, Fuzzy Logic Fuzzy Methods with Applications, England: Wiley.

    MATH  Google Scholar 

  • Beer, M. and Liebscher, M. (2008) Designing robust structures — a nonlinear simulation based approach, Computers & Structures 86, 1102–1122.

    Article  Google Scholar 

  • Belytschko, T. and Bindemann, L. P. (1993) Assumed strain stabilization of the eight Node hexahedral element, Computer Methods in Applied Mechanical Engineering 105, 225–260.

    Article  MATH  Google Scholar 

  • Ben-Haim, Y. and Elishakoff, I. (1990) Convex Models of Uncertainty in Applied Mechanics, Amsterdam: Elsevier.

    MATH  Google Scholar 

  • Chen, W.-F. (1982) Constructive Equations for Engineering Material, Elsevier: Amsterdam.

    Google Scholar 

  • Delaplace, A. and Ibrahimbegovic, A. (2006) Performance of time-stepping schemes for discrete models in fracture dynamic analysis, International Journal for Numerical Methods in Engineering 65, 1527–1544.

    Article  MATH  Google Scholar 

  • Hallquist, J. (1991–1998) LS-DYNA Theoretical Manual, Livermore Software Technology Corporation.

    Google Scholar 

  • Hallquist, J. (1992–2005) LS-DYNA Keyword User's Manual, Livermore Software Technology Corporation.

    Google Scholar 

  • Hartmann, D., Stangenberg, F., Melzer, R., and Blum, R. (1994) Computer-based planning of demolition of reinforced concrete smokestacks by means of blasting and implementation of a knowledge based assistance system (in German), Technisch-wissenschaftliche Mitteilungen Nr. 94–6, Institut für konstruktiven Ingenieurbau, Ruhr- Universität Bochum.

    Google Scholar 

  • Hartmann, D., Breidt, M., Nguyen, v. V., Stangenberg, F., Höhler, S., Schweizerhof, K., Mattern, S., Blankenhorn, G., Möller, B., and Liebscher, M. (2008) Structural collapse simulation under consideration of uncertainty — Fundamental concept and results, Computers & Structures p. doi:10.1016/j.compstruc.2008.03.004.

    Google Scholar 

  • Hofstetter, G. and Mang, A. (1995) Computational Mechanics of Reinforced Concrete Structures, Vieweg, Weisbaden, Germany.

    Google Scholar 

  • Ibrahimbegovic, A. and Delaplace, A. (2003) Microscale and mesoscale discrete models for dynamic fracture of structures built of brittle materials, Computers & Structures 81, 1255–1285.

    Article  Google Scholar 

  • Ibrahimbegovic, A., Taylor, R., and Lim, H. (2003) Non-linear dynamics of flexible multibody systems, Computers & Structures 81, 1113–1132.

    Article  Google Scholar 

  • Isobe, D. and Toi, Y. (1998) ASI finite element analysis of dynamic collapse behaviors of framed structures considering member fracture. In S. Idelson, E. Onate, and E. Dvorkin (eds.), Computational Mechanics, New Trends and Applications, 4th World Cong. Comp. Mech., Buenos Aires, p. 283.

    Google Scholar 

  • Kabele, P., Pokorny, T., and Koska, R., Finite element analysis of building collapse during Demolition. In Proceedings of 16th International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering [CD-ROM], Weimar: Bauhaus-Universität Weimar, 2003, ISSN 1611–4086.

    Google Scholar 

  • Kaewkulchai, G. and Williamson, E. B. (2004) Beam element formulation and solution procedure for dynamic progressive collapse analysis, Computers & Structures 82, 639–651.

    Article  Google Scholar 

  • Kaliszky, S. and Logo, J. (2006) Optimal design of elasto-plastic structures subjected to normal and extreme loads, Computers & Structures 84, 1770–1779.

    Article  Google Scholar 

  • Kapitaniak, T. (2000) Chaos for Engineers: Theory, Applications, and Control, Berlin: Heidelberg New York Springer.

    MATH  Google Scholar 

  • Krätschmer, V. (2001) A unified approach to fuzzy random variables, Fuzzy Sets and Systems 123, 1–9.

    Article  MATH  MathSciNet  Google Scholar 

  • Krätzig, W. and Jun, D. (2002) Multi-layer multi-director concepts for D-adaptivity in shell theory, Computer & Structures 80, 719–734.

    Article  Google Scholar 

  • Krätzig, W. and Polling, R. (2004) An elasto-plastic damage model for reinforced concrete with minimum number of material parameters, Computer & Structures 82, 1201–1215.

    Article  Google Scholar 

  • Liebscher, M. (2007) Dimensionierung und Bewertung von Tragwerken bei Unscharfe — Lösung des inversen Problems mit Methoden der explorativen Datenanalyse, Ph.D. thesis, Institut für Statik und Dynamik der Tragwerke, Technische Universität Dresden.

    Google Scholar 

  • Madsen, H., Krenk, S., and Lind, N. (1986) Methods of Structural Safety, Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Mattern, S., Blankenhorn, G., Breidt, M., Nguyen, V., Höhler, S., Schweizerhof, K., Hartmann, D., and Stangenberg, F. (2006) Comparison of building collapse simulation results from finite element and rigid body models, In Multiscale Problems in Multibody System Contacts, IUTAM Symposium, Stuttgart, 1, 257–267.

    Article  Google Scholar 

  • Meguro, K. and Hakuno, M. (1992) Simulation of collapse of structures due to earthquakes using the extended distinct element method, In Earthquake Engineering, 10th Word Conference, Balkema Rotterdam.

    Google Scholar 

  • Meguro, K. and Tagel-Din, H. (2002) Applied element method used for large displacement structural analysis, Natural Disaster Science 24, 25–34.

    Google Scholar 

  • Möller, B. and Beer, M. (2004) Fuzzy Randomness — Uncertainty in Civil Engineering and Computational Mechanics, Berlin: Springer.

    Google Scholar 

  • Möller, B., Liebscher, M., Schweizerhof, K., Mattern, S., and Blankenhorn, G. (2008) Structural collapse simulation under consideration of uncertainty — Improvement of numerical efficiency, Computers & Structuresp. doi:10.1016/j.compstruc.2008.04.011.

    Google Scholar 

  • MSC.ADAMS, Website, http://www.adams.com.

  • Pawlak, Z. (1991) Rough Sets. Theoretical Aspects of Reasoning About Data, Dordrecht: Kluwer.

    MATH  Google Scholar 

  • Pfister, T., Petryna, Y., and Stangenberg, F. (2006) Damage modelling of reinforced concrete under multiaxial fatigue loading, In G. Meschke, R. de Borst, H. Mang, and N. Bicanic (eds.), Computational Modelling of Concrete Structures, Proceedings of EURO-C 2006, 27–30 March 2006, Mayrhofen, Tirol, Austria, 421–429.

    Google Scholar 

  • Polling, R. (2000) A close-to-practise elasto-plastic damage model for reinforced concrete for structural analyses (in German), Ph.D. thesis, Ruhr-Universität Bochum.

    Google Scholar 

  • Simo, J.C. and Hughes, T.J.R. (1998) Computational Inelasticity, New York: Springer.

    MATH  Google Scholar 

  • Stange, K. (1977) Bayes-Verfahren, Schätz- und Testverfahren bei Berücksichtigung von Vorinformationen, Berlin Heidelberg New York: Springer.

    MATH  Google Scholar 

  • Starossek, U. (2006) Progressive collpase of structures: Nomenclature and procedures, IABSE, Structural Engineering International 16, 113–117.

    Article  Google Scholar 

  • Taylor, R.L. (2001) FEAP — A Finite Element Analysis Program, Programmer Manual.

    Google Scholar 

  • Wright, G. (1994) Subjective Probability, Chichester: Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this paper

Cite this paper

Hartmann, D. et al. (2009). On Fundamental Concept of Structural Collapse Simulation Taking Into Account Uncertainty Phenomena. In: Ibrahimbegovic, A., Zlatar, M. (eds) Damage Assessment and Reconstruction after War or Natural Disaster. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2386-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-2386-5_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-2384-1

  • Online ISBN: 978-90-481-2386-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics