Skip to main content

Computational Verification and Validation of Engineering Structures Via Error-Controlled Model and Discretization Adaptivity

  • Conference paper

In the European Union, codes and rules for guaranteeing safety and reliability of engineering structures are standardized in Eurocode EN 1990 — Basis of Structural Design.

Furthermore, ASME has released the V&V 10 — 2006 Guide for Verification and Validation in Computational Solid Mechanics, treating verified and validated mathematical models as well as verified computer codes. The issues of the ASME V&V Guide are not considered in Eurocode EN 1990 yet.

V&V is realized in Computational Mechanics by error-controlled model and discretization adaptivity of engineering structures, guaranteeing reliability and achieving computational efficiency. This is the main issue of this paper.

In particular, expansive model adaptivity from coarse to fine mathematical models in related subdomains is reasonable and efficient, in contrast to recursive model adaptivity. Validation needs the incorporation of verified measurements from physical experiments.

This paper presents a deterministic methodology for combined verification and model adaptivity by overall error control of quantities of interest. The necessary prolongation of coarse model solutions into the solution space of a fine model for defining a consistent model error is emphasized.

Another noteworthy part of the paper is the structural optimization of engineering structures with elasto-plastic deformations under shakedown conditions, i.e. for load domains. This is motivated by the fact that structural optimization in the presence of elasto-plastic deformations for distinct loading paths does not make any sense.

Finally, this paper also presents some design problems of a very complex structure: the German Pavilion at the World Exhibition 2000 in Hannover with principally new concave glass facades and glass-stiffened pre-stressed steel columns for supporting the huge roof. Especially the safety requirements for the various glass structures are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ainsworth, M. and Oden, J. (1993) A unified approach to a posteriori error estimation based on element residual methods, Numer. Math. 65, 23–50.

    Article  MATH  MathSciNet  Google Scholar 

  • Ainsworth, M. and Oden, J. (2000) A Posteriori Error Estimation in Finite Element Analysis, Wiley, New York.

    MATH  Google Scholar 

  • Babuška, I. and Miller, A. (1987) A feedback finite element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator, Comp. Meth. Appl. Mech. Eng. 61, 1–40.

    Article  MATH  Google Scholar 

  • Babuška, I. and Rheinboldt, W. (1978) A-posteriori error estimates for finite-element method, Int. J. Numer. Meth. Eng. 12, 1597–1615.

    Article  MATH  Google Scholar 

  • Babuška, I., Strouboulis, T., Gangaraj, S., and Upadhyay, C. (1997) Pollution error in the h-version of the finite element method and the local quality of the recovered derivatives, Comp. Meth. in Appl. Mech. Eng. 140, 1–37.

    Article  MATH  Google Scholar 

  • Bank, R. and Smith, R. (1993) A posteriori error estimates based on hierarchical bases, SIAM J. Numer. Anal. 30, 921–935.

    Article  MATH  MathSciNet  Google Scholar 

  • Bank, R. and Weiser, A. (1985) Some a posteriori error estimators for elliptic partial differential equations, Math. Comp. 44, 283–301.

    Article  MATH  MathSciNet  Google Scholar 

  • Becker, R. and Rannacher, R. (1996) A feed-back approach to error control in finite element methods: Basic analysis and examples, East—West J. Numer. Math. 4, 237–264.

    MATH  MathSciNet  Google Scholar 

  • Bischoff, M., Wall, W., Bletzinger, K., and Ramm, E. (2004) Models and finite elements for thin-walled structures, In E. Stein, R. de Borst, and T. Hughes (Eds.), Encyclopedia of Computational Mechanics, Wiley, Chichester, pp. 59–137.

    Google Scholar 

  • Braess, D. (2001) Finite elements. Theory, Fast Solvers, and Applications in Solid mechanics, Cambridge University Press, Cambridge 2nd edition.

    MATH  Google Scholar 

  • Brandt, A. and Kneib, W. (2001) Die Dachkonstruktion des Deutschen Pavillons auf der EXPO 2000 in Hannover, Bauingenieur 76, 483–486.

    Google Scholar 

  • Brink, U. and Stein, E. (1998) A posteriori error estimation in large-strain elasticity using equilibrated local Neumann problems, Comp. Meth. Appl. Mech. Eng. 161, 77–101.

    Article  MATH  MathSciNet  Google Scholar 

  • Burmeister, A., Reitinger, R., and Ramm, E. (2001) Der Deutsche Pavillon auf der EXPO 2000. Fassaden und glasversteifte Stützen, Bauingenieur 76, 487–497.

    Google Scholar 

  • Carey, G. (2006) A perspective on adaptive modeling and meshing (AM … M), Comp. Meth. Appl. Mech. Eng. 195, 214–235.

    Article  MATH  MathSciNet  Google Scholar 

  • Carstensen, C. and Funken, S. (2001) Averaging technique for FE — a posteriori error control in elasticity. Part I: Conforming FEM, Comp. Meth. Appl. Mech. Eng. 190, 2483–2498.

    Article  MATH  MathSciNet  Google Scholar 

  • Cirak, F. and Ramm, E. (1998) A posteriori error estimation and adaptivity for linear elasticity using the reciprocal theorem, Comp. Meth. Appl. Mech. Eng. 156, 351–362.

    Article  MATH  MathSciNet  Google Scholar 

  • Düster, A. and Rank, E. (2002) A p-version finite element approach for two- and three-dimensional problems of the J 2 flow theory with non-linear isotropic hardening, Int. J. Numer. Meth. Eng. 53, 49–63.

    Article  MATH  Google Scholar 

  • Düster, A., Niggl, A., and Rank, E. (2007) Applying the hp-d version of the FEM to locally enhance dimensionally reduced models, Comp. Meth. Appl. Mech. Eng. 196, 3524–3533.

    Article  Google Scholar 

  • Eriksson, K., Estep, D., Hansbo, P., and Johnson, C. (1995) Introduction to adaptive methods for differential equations, Acta Numer. 105, 106–158.

    MathSciNet  Google Scholar 

  • EuroNorm EN 1990 (2002) Eurocode. Basis of Structural Design. German version., Berlin, Beuth Verlag.

    Google Scholar 

  • Kuhn, T. (1962) The Structure of Scientific Revolutions, University of Chicago Press Chicago, IL.

    Google Scholar 

  • Ladevèze, P. and Leguillon, D. (1983) Error estimate procedure in the finite element method and applications, SIAM J. Numer. Anal. 20, 485–509.

    Article  MATH  MathSciNet  Google Scholar 

  • Larsson, F. and Runesson, K. (2005) Consistent time-cycle approximation for cyclic plasticity coupled to damage. In Onate, E. and Owen, D.R.J. (eds.), Computational Plasticity VIII, Fundamentals and Application, Barcelona, Spain, pp. 1102–1105.

    Google Scholar 

  • Larsson, F. and Runesson, K. (2006) Adaptive computational meso-macro-scale modeling of elastic composites, Comp. Meth. Appl. Mech. Eng. 195, 324–338.

    Article  MATH  MathSciNet  Google Scholar 

  • Larsson, F., Hansbo, P., and Runesson, K. (2002) On the computation of goal-oriented a posteriori error measure in nonlinear elasticity, Int. J. Numer. Meth. Eng. 55, 879–894.

    Article  MATH  MathSciNet  Google Scholar 

  • Niekamp, R. and Stein, E. (2002) An object-oriented approach for parallel two- and three-dimensional adaptive finite element computations, Comp. Struct. 80, 317–328.

    Article  Google Scholar 

  • Oden, J. and Cho, J. (1996) Adaptive hpq-finite element methods of hierarchical models for plate- and shell-like structures, Comp. Meth. Appl. Mech. Eng. 136, 317–346.

    Article  MATH  MathSciNet  Google Scholar 

  • Oden, J. and Prudhomme, S. (2002) Estimation of modeling error in computational mechanics, J. Comput. Phys. 182, 496–515.

    Article  MATH  MathSciNet  Google Scholar 

  • Oden, J., Prudhomme, S., Hammerand, D., and Kuczma, M. (2001) Modeling error and adaptivity in nonlinear continuum mechanics, Comp. Meth. Appl. Mech. Eng. 190, 6663–6684.

    Article  MATH  MathSciNet  Google Scholar 

  • Ohnimus, S., Stein, E., and Walhorn, E. (2001) Local error estimates of FEM for displacements and stresses in linear elasticity by solving local Neumann problems, Int. J. Numer. Meth. Eng. 52, 727–746.

    Article  MATH  MathSciNet  Google Scholar 

  • Parés, N., Diéz, P., and Huerta, A. (2006) Subdomain-based flux-free a posteriori error estimators, Comp. Meth. Appl. Mech. Eng. 195, 297–323.

    Article  MATH  Google Scholar 

  • Popper, K. (1959) The Logic of Scientific Discovery, Harper … Row, New York.

    MATH  Google Scholar 

  • Rank, E., Düster, A., Nübel, V., Preusch, K., and Bruhns, O. (2005) High order finite elements for shells, Comp. Meth. Appl. Mech. Eng. 194, 2494–2512.

    Article  MATH  Google Scholar 

  • Roache, P. (1998) Verification and Validation in Computational Science and Engineering, Hermosa, Albuquerque.

    Google Scholar 

  • Rüter, M. and Stein, E. (2004) Adaptive finite element analysis of crack propagation in elastic fracture mechanics based on averaging techniques, Comput. Mater. Sci. 31, 247–257.

    Google Scholar 

  • Schwab, C. (1996) A posteriori modeling error estimation for hierarchic plate models, Numer. Math. 74, 221–259.

    Article  MATH  MathSciNet  Google Scholar 

  • Stein, E. and Ohnimus, S. (1997) Coupled model- and solution-adaptivity in the finite element method, Comp. Meth. Appl. Mech. Eng. 150, 327–350.

    Article  MATH  MathSciNet  Google Scholar 

  • Stein, E. and Ohnimus, S. (1999) Anisotropic discretization- and model-error estimation in solid mechanics by local Neumann problems, Comp. Meth. Appl. Mech. Eng. 176, 363–385.

    Article  MATH  MathSciNet  Google Scholar 

  • Stein, E. and Rüter, M. (2007) Finite element methods for elasticity with error-controlled discretization and model adaptivity. In E. Stein, R. de Borst, and T. Hughes (eds.), Encyclopedia of Computational Mechanics, First Electronic Revision, Vol. 2, Wiley, Chichester, pp. 1–55.

    Google Scholar 

  • Stein, E., Rust, W., and Ohnimus, S. (1992)a h- and p-adaptive finite element methods for two-dimensional structural problems including postbuckling of shells, Comp. Meth. Appl. Mech. Eng. 101, 315–354.

    Article  MATH  Google Scholar 

  • Stein, E., Zhang, G., and König, J. (1992b) Shakedown with nonlinear hardening including structural computation using finite element method, Int. J. of Plasticity 8, 1–31.

    Article  MATH  Google Scholar 

  • Stein, E., Rüter, M., and Ohnimus, S. (2004) Adaptive finite element analysis and modelling of solids and structures. Findings, problems and trends, Int. J. Numer. Meth. Eng. 60, 103–138.

    Article  MATH  Google Scholar 

  • Stein, E., Rüter, M., and Ohnimus, S. (2007) Error-controlled adaptive goal-oriented modeling and finite element approximations in elasticity, Comp. Meth. Appl. Mech. Eng. 196, 3598–3613.

    Article  Google Scholar 

  • Szabó, B. and Sahrmann, G. (1988) Hierarchic plate and shell models based on p-extension, Int. J. Numer. Meth. Eng. 26, 1855–1881.

    Article  MATH  Google Scholar 

  • Verfürth, R. (1996) A Review of a Posteriori Error Estimation and Adaptive Mesh Refinement Techniques, Wiley-Teubner, Chichester Stuttgart.

    MATH  Google Scholar 

  • Vogelius, M. and Babu?ska, I. (1981) On a dimensional reduction method. II. Some approximation-theoretic results, Math. Comput. 37, 47–48.

    Article  MATH  MathSciNet  Google Scholar 

  • Wiechmann, K. and Stein, E. (2006) Shape optimization for elasto-plastic deformation under shakedown conditions, Int. J. Solids Struct. 43, 7145–7165.

    Article  MATH  Google Scholar 

  • Zienkiewicz, O. and Zhu, J. (1987) Simple error estimator and adaptive procedure for practical engineering analysis, Int. J. Numer. Meth. Eng. 24, 337–357.

    Article  MATH  MathSciNet  Google Scholar 

  • Zienkiewicz, O. and Zhu, J. (1992) The superconvergent patch recovery (SPR) and adaptive finite element refinements, Comput. Meth. Appl. Mech. Eng. 101, 207–224.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this paper

Cite this paper

Stein, E., Rüter, M., Ohnimus, S., Wiechmann, K. (2009). Computational Verification and Validation of Engineering Structures Via Error-Controlled Model and Discretization Adaptivity. In: Ibrahimbegovic, A., Zlatar, M. (eds) Damage Assessment and Reconstruction after War or Natural Disaster. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2386-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-2386-5_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-2384-1

  • Online ISBN: 978-90-481-2386-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics