Skip to main content
  • 409 Accesses

Riassunto

La Risonanza Magnetica (RM) rappresenta oggi la principale metodica di neuroimaging applicata alla SM. Apartire dagli anni Novanta, infatti, la RM convenzionale (RM-c) si è andata via via affermando quale strumento indispensabile per la diagnosi e il monitoraggio della malattia [1]. Caratteristica distintiva di questa metodica è quella di evidenziare con estrema facilità le classiche lesioni demielinizzanti focali della sostanza bianca (SB), nonché la frequente attività infraclinica di malattia, contrassegnata dalla comparsa di nuove lesioni anche in assenza di sintomi e/o segni di riacutizzazione di malattia. Tali prerogative della RM-c hanno portato, nel giro di pochi anni, alla definizione di validati criteri paraclinici per la diagnosi di SM basati proprio sui reperti di RM-c [2, 3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refrences

  1. Miller DH, Grossman RI, Reingold SC et al (1998) The role of magnetic resonance techniques in understanding and managing multiple sclerosis. Brain 121:3–24

    Article  PubMed  Google Scholar 

  2. McDonald WI, Compston A, Edan G et al (2001) Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 50:121–127

    Article  PubMed  CAS  Google Scholar 

  3. Polman CH, Reingold SC, Edan G et al (2005) Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann Neurol 58:840–846

    Article  PubMed  Google Scholar 

  4. Ormerod IEC, Miller DH, McDonald WI et al (1987) The role of NMR imaging in the assessment of multiple sclerosis and isolated neurological lesions: a quantitative study. Brain 110:1579–1616

    Article  PubMed  Google Scholar 

  5. Thorpe JW, Kidd D, Moseley IF et al (1996) Spinal MRI in patients with suspected multiple sclerosis and negative brain MRI. Brain 119:709–714

    Article  PubMed  Google Scholar 

  6. Gass A, Filippi M, Rodegher ME et al (1998) Characteristics of chronic MS lesions in the cerebrum, brainstem, spinal cord, and optic nerve on T1-weighted MRI. Neurology 50:548–550

    PubMed  CAS  Google Scholar 

  7. Triulzi F, Scotti G (1998) Differential diagnosis of multiple sclerosis: contribution of magnetic resonance techniques. J Neurol Neurosurg Psychiatry 64:S6–S14

    Article  PubMed  Google Scholar 

  8. Pittock SJ, Lucchinetti CF (2007) The pathology of MS: new insights and potential clinical applications. Neurologist 13:45–56

    Article  PubMed  Google Scholar 

  9. van Walderveen MA, Kamphorst W, Scheltens P et al (1998) Histopathologic correlate of hypointense lesions on T1-weighted spin-echo MRI in multiple sclerosis. Neurology 50:1282–1288

    PubMed  Google Scholar 

  10. Filippi M, Paty DW, Kappos L et al (1995) Correlations between changes in disability and T2-weighted brain MRI activity in multiple sclerosis: A follow-up study. Neurology 45:255–260

    PubMed  CAS  Google Scholar 

  11. Kappos L, Moeri D, Radue EW et al (1999) Predictive value of gadolinium-enhanced MRI for relapse rate and changes in disability/impairment in multiple sclerosis: a metanalysis. Lancet 353:964–969

    Article  PubMed  CAS  Google Scholar 

  12. Barkhof F (2002) The clinico-radiological paradox in multiple sclerosis revisited. Curr Opin Neurol 15:239–245

    Article  PubMed  Google Scholar 

  13. Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33:1444–1452

    PubMed  CAS  Google Scholar 

  14. Bagnato F, Evangelou IE, Gallo A et al (2007) The effect of interferon-beta on black holes in patients with multiple sclerosis. Expert Opin Biol Ther 7:1079–1091

    Article  PubMed  CAS  Google Scholar 

  15. Lucchinetti C, Bruck W, Parisi J et al (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47:707–717

    Article  PubMed  CAS  Google Scholar 

  16. Minneboo A, Uitdehaag BM, Ader HJ et al (2005) Patterns of enhancing lesion evolution in multiple sclerosis are uniform within patients. Neurology 65:56–61

    Article  PubMed  CAS  Google Scholar 

  17. Li DK, Li MJ, Traboulsee A et al (2006) The use of MRI as an outcome measure in clinical trials. Adv Neurol 98:203–226

    PubMed  Google Scholar 

  18. Paty DW, Li DK (1993) Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. II. MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. UBC MS/MRI Study Group and the IFNB Multiple Sclerosis Study Group. Neurology 43:662–667

    PubMed  CAS  Google Scholar 

  19. Simon JH, Jacobs LD, Campion M et al (1998) Magnetic resonance studies of intramuscular interferon beta-1a for relapsing multiple sclerosis. Ann Neurol 43:79–87

    Article  PubMed  CAS  Google Scholar 

  20. Li DK, Paty DW and the UBC MS/MRI Analysis Research Group, PRISMS Study Group (1999) Magnetic resonance imaging results of the PRISMS trial: a randomized, double-blind, placebo-controlled study of Interferon beta-1a in relapsing-remitting multiple sclerosis. Ann Neurol 46:197–206

    Article  PubMed  CAS  Google Scholar 

  21. Comi G, Filippi M, Wolinsky JS and the European/Canadian Glatiramer Acetate Study Group (2001) European/Canadian multicenter, double blind, randomized, placebo-controlled study of the effects of glatiramer acetate on magnetic resonance imaging-measured disease activity and burden in patients with relapsing multiple sclerosis. Ann Neurol 49:290–297

    Article  PubMed  CAS  Google Scholar 

  22. Polman CH, O’Connor PW, Havrdova E et al (2006) A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 354:899–910

    Article  PubMed  CAS  Google Scholar 

  23. Jacobs LD, Beck RW, Simon JH et al (2000) Intramuscular interferon beta-1a therapy initiated during a first demyelinating event in multiple sclerosis. N Engl J Med 343:898–904

    Article  PubMed  CAS  Google Scholar 

  24. Comi G, Filippi M, Barkhof F et al (2001) Early Treatment of Multiple Sclerosis Study Group. Effect of early interferon treatment on conversion to definite multiple sclerosis: a randomised study. Lancet 357:1576–1582

    Article  PubMed  CAS  Google Scholar 

  25. Kappos L, Polman CH, Freedman MS et al (2006) Treatment with interferon beta-1b delays conversion to clinically definite and McDonald MS in patients with clinically isolated syndromes. Neurology 67:1242–1249

    Article  PubMed  CAS  Google Scholar 

  26. Comi G, Martinelli V, Rodegher M et al (2010) PreCISe study group. Effect of glatiramer acetate on conversion to clinically definite multiple sclerosis in patients with clinically iso-lated syndrome (PreCISe study): a randomised, double-blind, placebo-controlled trial. Lancet 374:1503–1511

    Article  CAS  Google Scholar 

  27. Hauser SL, Waubant E, Arnold DL et al (2008) B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med 358:676–688

    Article  PubMed  CAS  Google Scholar 

  28. Bakshi R, Hutton GJ, Miller JR, Radue EW (2004) The use of magnetic resonance imaging in the diagnosis and long-term management of multiple sclerosis. Neurology 63(11 Suppl 5):S3–S11

    PubMed  Google Scholar 

  29. Barkhof F, van Waesberghe JH, Filippi M et al (2001) European Study Group on Interferon beta-1b in Secondary Progressive Multiple Sclerosis. T(1) hypointense lesions in secondary progressive multiple sclerosis: effect of interferon beta-1b treatment. Brain 124:1396–1402

    Article  PubMed  CAS  Google Scholar 

  30. McGowan JC (1999) The physical basis of magnetization transfer imaging. Neurology 53(5 Suppl 3):S3–S7

    PubMed  CAS  Google Scholar 

  31. van Buchem MA, McGowan JC, Grossman RI (1999) Magnetization transfer histogram methodology: its clinical and neuropsychological correlates. Neurology 53(5 Suppl 3):S23–S28

    PubMed  Google Scholar 

  32. Le Bihan D, Breton E, Lallemand D et al (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407

    Google Scholar 

  33. Basser PJ, Mattiello J, LeBihan D (1994) Estimation of the effective self-diffusion tensor from the NMR spin-echo. J Magn Reson B 103:247–254

    Article  PubMed  CAS  Google Scholar 

  34. Pierpaoli C, Jezzard P, Basser PJ et al (1996) Diffusion tensor MR imaging of the human brain. Radiology 201:637–648

    PubMed  CAS  Google Scholar 

  35. Cercignani M, Inglese M, Pagani E et al (2001) Mean diffusivity and fractional anisotropy histograms in patients with multiple sclerosis. Am J Neuroradiol 22:952–958

    PubMed  CAS  Google Scholar 

  36. Ciccarelli O, Catani M, Johansen-Berg H et al (2008) Diffusion-based tractography in neurological disorders: concepts, applications, and future developments. Lancet Neurol 7:715–727

    Article  PubMed  Google Scholar 

  37. Sajja BR, Wolinsky JS, Narayana PA (2009) Proton magnetic resonance spectroscopy in multiple sclerosis. Neuroimaging Clin N Am 19:45–58

    Article  PubMed  Google Scholar 

  38. Arnold DL, De Stefano N, Narayanan S et al (2001) Axonal injury and disability in multiple sclerosis: magnetic resonance spectroscopy as a measure of dynamic pathological change in white matter. In: Magnetic resonance spectroscopy in multiple sclerosis. Springer, Milan, pp 61–67

    Google Scholar 

  39. Sarchielli P, Presciutti O, Pelliccioli GP et al (1999) Absolute quantification of brain metabolites by proton magnetic resonance spectroscopy in normal-appearing white matter of multiple sclerosis patients. Brain 122:513–521

    Article  PubMed  Google Scholar 

  40. Ogawa S, Menon RS, Kim SG et al (1998) On the characteristics of functional magnetic resonance imaging of the brain. Annu Rev Biophys Biomol Struct 27:447–474

    Article  PubMed  CAS  Google Scholar 

  41. Geurts JJ, Barkhof F (2008) Grey matter pathology in multiple sclerosis. Lancet Neurol 7:841–851

    Article  PubMed  Google Scholar 

  42. Pirko I, Lucchinetti CF, Sriram S et al (2007) Gray matter involvement in multiple sclerosis. Neurology 68:634–642

    Article  PubMed  Google Scholar 

  43. Nakamura K, Fisher E (2009) Segmentation of brain magnetic resonance images for measurement of gray matter atrophy in multiple sclerosis patients. Neuroimage 44:769–776

    Article  PubMed  Google Scholar 

  44. Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. PNAS 97:11050–11955

    Article  PubMed  CAS  Google Scholar 

  45. Ashburner J, Friston KJ (2000) Voxel-based morphometry-the methods. Neuroimage 11:805–821

    Article  PubMed  CAS  Google Scholar 

  46. Wattjes MP, Lutterbey GG, Gieseke J et al (2007) Double inversion recovery brain imaging at 3T: diagnostic value in the detection of multiple sclerosis lesions. Am J Neuroradiol 28:54–59

    Article  PubMed  CAS  Google Scholar 

  47. Geurts JJ, Blezer EL, Vrenken H et al (2008) Does high-field MR imaging improve cortical lesion detection in multiple sclerosis? J Neurol 255:183–191

    Article  PubMed  Google Scholar 

  48. Mainero C, Benner T, Radding A et al (2009) In vivo imaging of cortical pathology in multiple sclerosis using ultra-high field MRI. Neurology 73:941–948

    Article  PubMed  Google Scholar 

  49. Schmierer K, Parkes HG, So PW et al (2010) High field (9.4 Tesla) magnetic resonance imaging of cortical grey matter lesions in multiple sclerosis. Brain 133:858–867

    Article  PubMed  Google Scholar 

  50. Nelson F, Poonawalla A, Hou P et al (2008) 3D MPRAGE improves classification of cortical lesions in multiple sclerosis. Mult Scler 14:1214–1219

    Article  PubMed  CAS  Google Scholar 

  51. Tubridy N, Barker GJ, MacManus DG (1998) Three-dimensional fast fluid attenuated inversion recovery (3D fast FLAIR): a new MRI sequence which increases the detectable cerebral lesion load in multiple sclerosis. Br J Radiol 71:840–845

    PubMed  CAS  Google Scholar 

  52. Lazeron RH, Langdon DW, Filippi M et al (2000) Neuropsychological impairment in multiple sclerosis patients: the role of (juxta)cortical lesion on FLAIR. Mult Scler 6:280–285

    PubMed  CAS  Google Scholar 

  53. Bakshi R, Ariyaratana S, Benedict RH et al (2001) Fluid-attenuated inversion recovery magnetic resonance imaging detects cortical and juxtacortical multiple sclerosis lesions. Arch Neurol 58:742–748

    Article  PubMed  CAS  Google Scholar 

  54. Geurts JJ, Pouwels PJ, Uitdehaag BM et al (2005) Intracortical lesions in multiple sclerosis: improved detection with 3D double inversion-recovery MR imaging. Radiology 236:254–260

    Article  PubMed  Google Scholar 

  55. Calabrese M, De Stefano N, Atzori M et al (2007) Detection of cortical inflammatory lesions by double inversion recovery magnetic resonance imaging in patients with multiple sclerosis. Arch Neurol 64:1416–1422

    Article  PubMed  Google Scholar 

  56. Bagnato F, Butman JA, Gupta S et al (2006) In vivo detection of cortical plaques by MR imaging in patients with multiple sclerosis. Am J Neuroradiol 27:2161–2167

    PubMed  CAS  Google Scholar 

  57. Ashburner J, Friston KJ (2000) Voxel-based morphometry-the methods. Neuroimage 11:805–821

    Article  PubMed  CAS  Google Scholar 

  58. Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9:179–194

    Article  PubMed  CAS  Google Scholar 

  59. Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage 9:195–207

    Article  PubMed  Google Scholar 

  60. Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. PNAS 97:11050–11055

    Article  PubMed  CAS  Google Scholar 

  61. Fischl B, van der Kouwe A, Destrieux C et al (2004) Automatically parcellating the human cerebral cortex. Cereb Cortex 14:11–22

    Article  PubMed  Google Scholar 

  62. Desikan RS, Ségonne F, Fischl B et al (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31:968–980

    Article  PubMed  Google Scholar 

  63. Fischl B, Salat DH, Busa E et al (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33:341–355

    Article  PubMed  CAS  Google Scholar 

  64. Van Waesberghe JH, Kamphorst W, DeGroot CJ et al (1999) Axonal loss in multiple sclerosis lesions: magnetic resonance imaging insights into substrates of disability. Ann Neurol 46:747–754

    Article  PubMed  Google Scholar 

  65. Kimura H, Grossman RI, Lenkinski RE et al (1996) Proton MR spectroscopy and magnetization transfer ratio in multiple sclerosis: correlative findings of active versus irreversible plaque disease. Am J Neuroradiol 17:1539–1547

    PubMed  CAS  Google Scholar 

  66. Loevner LA, Grossman RI, McGowan JC et al (1995) Characterization of multiple sclerosis plaques with T1-weighted MR and quantitative magnetization transfer. Am J Neuroradiol 16:1473–1479

    PubMed  CAS  Google Scholar 

  67. Dousset V, Gayou A, Brochet B et al (1998) Early structural changes in acute MS lesions assessed by serial magnetization transfer studies. Neurology 51:1150–1155

    PubMed  CAS  Google Scholar 

  68. Filippi M, Rocca MA, Martino G et al (1998) Magnetization transfer changes in the normal appearing white matter precede the appearance of enhancing lesions in patients with multiple sclerosis. Ann Neurol 43:809–814

    Article  PubMed  CAS  Google Scholar 

  69. Goodkin DE, Rooney WD, Sloan R et al (1998) A serial study of new MS lesions and the white matter from which they arise. Neurology 51:1689–1697

    PubMed  CAS  Google Scholar 

  70. Rocca MA, Mastronardo G, Rodegher M et al (1999) Long-term changes of magnetization transfer-derived measures from patients with relapsing-remitting and secondary progressive multiple sclerosis. Am J Neuroradiol 20:821

    PubMed  CAS  Google Scholar 

  71. Werring DJ, Clark CA, Barker GJ et al (1999) Diffusion tensor imaging of lesions and normal-appearing white matter in multiple sclerosis. Neurology 52:1626–1632

    PubMed  CAS  Google Scholar 

  72. Davie CA, Hawkins CP, Barker GJ et al (1994) Serial proton magnetic resonance spec-troscopy in acute multiple sclerosis lesions. Brain 117:49–58

    Article  PubMed  Google Scholar 

  73. Narayana PA, Doyle TJ, Lai D et al (1998) Serial proton resonance spectroscopic imaging, contrast-enhanced magnetic resonance imaging, and quantitative lesion volumetry in multiple sclerosis. Ann Neurol 43:56–71

    Article  PubMed  CAS  Google Scholar 

  74. De Stefano N, Matthews PM, Antel JP et al (1996) Chemical pathology of acute demyelinating lesions and its correlation with disability. Ann Neurol 38:901–909

    Article  Google Scholar 

  75. De Stefano N, Matthews PM, Arnold DL (1995) Reversible decreases in N-acetylaspartate after acute brain injury. Magn Reson Med 34:721–727

    Article  PubMed  Google Scholar 

  76. Fu L, Matthews PM, De Stefano N et al (1998) Imaging axonal damage of normal-appearing white matter in multiple sclerosis. Brain 121:159–166

    Article  Google Scholar 

  77. Arnold DL, Matthews PM, Francis GS et al (1992) Proton magnetic resonance spectroscopic imaging for metabolic characterization of demyelinating plaques. Ann Neurol 31:235–241

    Article  PubMed  CAS  Google Scholar 

  78. Falini A, Calabrese G, Filippi M et al (1998) Benign versus secondary-progressive multiple sclerosis: the potential role of proton MR spectroscopy in defining the nature of disability. Am J Neuroradiol 19:223–229

    PubMed  CAS  Google Scholar 

  79. Trapp BD, Peterson J, Ransohoff RM et al (1998) Axonal transection in the lesions of multiple sclerosis. New Engl J Med 338:278–285

    Article  PubMed  CAS  Google Scholar 

  80. Allen IV, McKeown SR (1979) A histological, histochemical and biochemical study of the macroscopically normal white matter in multiple sclerosis. J Neurol Sci 41:81–91

    Article  PubMed  CAS  Google Scholar 

  81. Filippi M, Campi A, Dousset V et al (1995) A magnetization transfer imaging study of normal appearing white matter in multiple sclerosis. Neurology 45:478–482

    PubMed  CAS  Google Scholar 

  82. Pike GB, De Stefano N, Narayanan S et al (2000) Multiple sclerosis: magnetization transfer MR imaging of white matter before lesion appearance on T2-weighted images. Radiology 215:824–830

    PubMed  CAS  Google Scholar 

  83. Filippi M, Iannucci G, Tortorella C et al (1999) Comparison of MS clinical phenotypes using conventional and magnetization transfer MRI. Neurology 52:588–594

    PubMed  CAS  Google Scholar 

  84. Rovaris M, Bozzali M, Santuccio G et al (2000) Relative contribution of brain and spine pathology to multiple sclerosis disability: a study with magnetisation transfer ratio analysis. J Neurol, Neurosurg Psychiatry 69:723–727

    Article  CAS  Google Scholar 

  85. Iannucci G, Tortorella C, Rovaris M et al (2000) Prognostic value of MR and MTI findings at presentation in patients with clinically isolated syndromes suggestive of MS. Am J Neuradiol 21:1034–1038

    CAS  Google Scholar 

  86. Kaiser JS, Grossman RI, Polansky M et al (2000) Magnetization transfer histogram analysis of monosymptomatic episodes of neurologic dysfunction: preliminary findings. Am J Neuroradiol 21:1043–1047

    PubMed  CAS  Google Scholar 

  87. Traboulsee A, Dehmeshki J, Brex PA et al (2002) Normal-appearing brain tissue MTR histograms in clinically isolated syndromes suggestive of MS. Neurology 59:126–128

    PubMed  CAS  Google Scholar 

  88. Gallo A, Rovaris M, Benedetti B et al (2007) A brain magnetization transfer MRI study with a clinical follow-up of about four years in patients with clinically isolated syndromes suggestive of multiple sclerosis. J Neurol 254:78–83

    Article  PubMed  Google Scholar 

  89. Fernando KT, Tozer DJ, Miszkiel KA et al (2005) Magnetization transfer histograms in clinically isolated syndromes suggestive of multiple sclerosis. Brain 128:2911–2925

    Article  PubMed  CAS  Google Scholar 

  90. van Buchem MA, Grossman RI, Armstrong C et al (1998) Correlation of volumetric magnetization transfer imaging clinical data in MS. Neurology 50:1609–1617

    PubMed  Google Scholar 

  91. Iannucci G, Minicucci L, Rodegher M et al (1999) Correlations between clinical and MRI involvement in multiple sclerosis: assessment using T(1), T(2) and MT histograms. J Neurol Sci 171:121–129

    Article  PubMed  CAS  Google Scholar 

  92. Cercignani M, Bozzali M, Iannucci G et al (2001) Magnetization transfer ratio and mean diffusivity of normal appearing white and grey matter from patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 70:311–317

    Article  PubMed  CAS  Google Scholar 

  93. Ciccarelli O, Werring DJ, Wheeler-Kingshott CA et al (2001) Investigation of MS normal appearing brain using diffusion tensor MRI with clinical correlations. Neurology 56:926–933

    PubMed  CAS  Google Scholar 

  94. Caramia F, Pantano P, Di Legge S et al (2002) A longitudinal study of MR diffusion changes in normal appearing white matter of patients with early multiple sclerosis. Magn Res Imag 20:383–388

    Article  Google Scholar 

  95. Gallo A, Rovaris M, Riva R et al (2005) Diffusion-tensor magnetic resonance imaging detects normal-appearing white matter damage unrelated to short-term disease activity in patients at the earliest clinical stage of multiple sclerosis. Arch Neurol 62:803–808

    Article  PubMed  Google Scholar 

  96. Arnold DL, Matthews PM, Francis G et al (1990) Proton magnetic resonance spectroscopy of human brain in vivo in the evaluation of multiple sclerosis: assessment of the load of disease. Magn Reson Med 14:154–159

    Article  PubMed  CAS  Google Scholar 

  97. Fu L, Matthews PM, De Stefano N et al (1998) Imaging axonal damage of normal appearing white matter in multiple sclerosis. Brain 121:103–113

    Article  PubMed  Google Scholar 

  98. De Stefano N, Matthews PM, Fu L et al (1998) Axonal damage correlates with disability in patients with relapsing remitting multiple sclerosis: results of a longitudinal MR spectroscopy study. Brain 121:1469–1477

    Article  PubMed  Google Scholar 

  99. Rocca MA, Cercignani M, Iannucci G et al (2000) Weekly diffusion-weighted imaging of normal-appearing white matter in MS. Neurology 55:882–884

    PubMed  CAS  Google Scholar 

  100. Brenner RE, Munro PMG, Williams SCR et al (1993) Abnormal neuronal mitochondria: a cause of reduction in NA in demyelinating disease. Proc SMRM:281

    Google Scholar 

  101. De Stefano N, Narayanan S, Francis GS et al (2001) Evidence of axonal damage in the early stages of MS and its relevance to disability. Arch Neurol 58:65–70

    Article  PubMed  Google Scholar 

  102. Fernando KT, McLean MA, Chard DT et al (2004) Elevated white matter myo-inositol in clinically isolated syndromes suggestive of multiple sclerosis. Brain 127:1361–1369

    Article  PubMed  CAS  Google Scholar 

  103. Wattjes MP, Harzheim M, Lutterbey GG et al (2008) Prognostic value of high-field proton magnetic resonance spectroscopy in patients presenting with clinically isolated syndromes suggestive of multiple sclerosis. Neuroradiology 50:123–129

    Article  PubMed  Google Scholar 

  104. Fisniku LK, Altmann DR, Cercignani M et al (2009) Magnetization transfer ratio abnormalities reflect clinically relevant grey matter damage in multiple sclerosis. Mult Scler 15:668–677

    Article  PubMed  CAS  Google Scholar 

  105. Sharma J, Zivadinov R, Jaisani Z et al (2006) A magnetization transfer MRI study of deep gray matter involvement in multiple sclerosis. J Neuroimaging 16:302–310

    Article  PubMed  Google Scholar 

  106. Amato MP, Portaccio E, Stromillo ML et al (2008) Cognitive assessment and quantitative magnetic resonance metrics can help to identify benign multiple sclerosis. Neurology 71:632–638

    Article  PubMed  CAS  Google Scholar 

  107. Penny S, Khaleeli Z, Cipolotti L et al (2010) Early imaging predicts later cognitive impairment in primary progressive multiple sclerosis. Neurology 74:545–552

    Article  PubMed  CAS  Google Scholar 

  108. Khaleeli Z, Altmann DR, Cercignani M et al (2008) Magnetization transfer ratio in gray matter: a potential surrogate marker for progression in early primary progressive multiple sclerosis. Arch Neurol 65:1454–1459

    Article  PubMed  Google Scholar 

  109. Penny S, Khaleeli Z, Cipolotti L et al (2010) Early imaging predicts later cognitive impairment in primary progressive multiple sclerosis. Neurology 74:545–552

    Article  PubMed  CAS  Google Scholar 

  110. Agosta F, Rovaris M, Pagani E et al (2006) Magnetization transfer MRI metrics predict the accumulation of disability 8 years later in patients with multiple sclerosis. Brain 129:2620–2627

    Article  PubMed  Google Scholar 

  111. Bozzali M, Cercignani M, Sormani MP et al (2002) Quantification of brain gray matter damage in different MS phenotypes by use of diffusion tensor MR imaging. Am J Neuroradiol 23:985–988

    PubMed  Google Scholar 

  112. Rovaris M, Bozzali M, Iannucci G et al (2002) Assessment of normal-appearing white and gray matter in patients with primary progressive multiple sclerosis: a diffusion-tensor magnetic resonance imaging study. Arch Neurol 59:1406–1412

    Article  PubMed  Google Scholar 

  113. Fabiano AJ, Sharma J, Weinstock-Guttman B et al (2003) Thalamic involvement in multiple sclerosis: a diffusion-weighted magnetic resonance imaging study. J Neuroimag 13:307–314

    Google Scholar 

  114. Hasan KM, Halphen C, Kamali A et al (2009) Caudate nuclei volume, diffusion tensor metrics, and T(2) relaxation in healthy adults and relapsing-remitting multiple sclerosis patients: implications for understanding gray matter degeneration. J Magn Reson Imaging 29:70–77

    Article  PubMed  Google Scholar 

  115. Oreja-Guevara C, Rovaris M, Iannucci G et al (2005) Progressive grey matter damage in patients with relapsing-remitting MS: a longitudinal diffusion tensor MRI study. Arch Neurol 62:578–584

    Article  PubMed  Google Scholar 

  116. Rovaris M, Gallo A, Valsasina P et al (2005) Short-term accrual of gray matter pathology in patients with progressive multiple sclerosis: an in vivo study using diffusion tensor MRI. Neuroimage 24:1139–1146

    Article  PubMed  Google Scholar 

  117. Rovaris M, Judica E, Gallo A et al (2006) Grey matter damage predicts the evolution of primary progressive multiple sclerosis at 5 years. Brain 129:2628–2634

    Article  PubMed  CAS  Google Scholar 

  118. Rovaris M, Iannucci G, Falautano M et al (2002) Cognitive dysfunction in patients with mildly disabling relapsing-remitting multiple sclerosis: an exploratory study with diffusion tensor MR imaging. J Neurol Sci 195:103–109

    Article  PubMed  Google Scholar 

  119. Benedict RH, Bruce J, Dwyer MG et al (2007) Diffusion-weighted imaging predicts cognitive impairment in multiple sclerosis. Mult Scler 13:722–730

    Article  PubMed  Google Scholar 

  120. Kapeller P, McLean MA, Griffin CM et al (2001) Preliminary evidence for neuronal damage in cortical grey matter and normal appearing white matter in short duration relapsing-remitting multiple sclerosis: a quantitative MR spectroscopic imaging study. J Neurol 248:131–138

    Article  PubMed  CAS  Google Scholar 

  121. Sarchielli P, Presciutti O, Tarduci R et al (2002) Localized 1H magnetic resonance spectroscopy in mainly cortical gray matter of patients with multiple sclerosis. J Neurol 249:902–910

    Article  PubMed  CAS  Google Scholar 

  122. Chard DT, Griffin CM, McLean MA et al (2002) Brain metabolite changes in cortical grey and normal-appearing white matter in clinically early relapsing-remitting multiple sclerosis. Brain 125:2342–2352

    Article  PubMed  CAS  Google Scholar 

  123. Sharma R, Narayana PA, Wolinsky JS (2001) Grey matter abnormalities in multiple sclerosis: proton magnetic resonance spectroscopic imaging. Mult Scler 7:221–226

    PubMed  CAS  Google Scholar 

  124. Cifelli A, Arridge M, Jezzard P et al (2002) Thalamic neurodegeneration in multiple sclerosis. Ann Neurol 52:650–653

    Article  PubMed  Google Scholar 

  125. Gonen O, Viswanathan AK, Catalaa I et al (1998) Total brain N-acetylaspartate concentration in normal, age-grouped females: quantitation with non-echo proton NMR spectroscopy. Magn Reson Med 40:684–689

    Article  PubMed  CAS  Google Scholar 

  126. Gonen O, Catalaa I, Babb JS et al (2000) Total brain N-acetylaspartate: a new measure of disease load in MS. Neurology 54:15–19

    PubMed  CAS  Google Scholar 

  127. Pulizzi A, Rovaris M, Judica E et al (2007) Determinants of disability in multiple sclerosis at various disease stages: a multiparametric magnetic resonance study. Arch Neurol 64:1163–1168

    Article  PubMed  Google Scholar 

  128. Benedetti B, Rovaris M, Rocca MA et al (2009) In-vivo evidence for stable neuroaxonal damage in the brain of patients with benign multiple sclerosis. Mult Scler 15:789–794

    Article  PubMed  CAS  Google Scholar 

  129. Rovaris M, Gallo A, Falini A et al (2005) Axonal injury and overall tissue loss are not related in primary progressive multiple sclerosis. Arch Neurol 62:898–902

    Article  PubMed  Google Scholar 

  130. Calabrese M, De Stefano N, Atzori M et al (2007) Detection of cortical inflammatory lesions by double inversion recovery magnetic resonance imaging in patients with multiple sclerosis. Arch Neurol 64:1416–1422

    Article  PubMed  Google Scholar 

  131. Calabrese M, Filippi M, Rovaris M et al (2009) Evidence for relative cortical sparing in benign multiple sclerosis: a longitudinal magnetic resonance imaging study. Mult Scler 15:36–41

    Article  PubMed  CAS  Google Scholar 

  132. Roosendaal SD, Moraal B, Pouwels PJ et al (2009) Accumulation of cortical lesions in MS: relation with cognitive impairment. Mult Scler 15:708–714

    Article  PubMed  CAS  Google Scholar 

  133. Calabrese M, Agosta F, Rinaldi F et al (2009) Cortical lesions and atrophy associated with cognitive impairment in relapsing-remitting multiple sclerosis. Arch Neurol 66:1144–1150

    Article  PubMed  Google Scholar 

  134. Calabrese M, Rocca MA, Atzori M et al (2009) Cortical lesions in primary progressive multiple sclerosis: a 2-year longitudinal MR study. Neurology 72:1330–1336

    Article  PubMed  CAS  Google Scholar 

  135. Calabrese M, Rocca MA, Atzori M et al (2010) A 3-year magnetic resonance imaging study of cortical lesions in relapse-onset multiple sclerosis. Ann Neurol 67:376–383

    PubMed  Google Scholar 

  136. De Stefano N, Matthews PM, Filippi M et al (2003) Evidence of early cortical atrophy in MS: relevance to white matter changes and disability. Neurology 60:1157–1162

    PubMed  Google Scholar 

  137. Sanfilipo MP, Benedict RH, Sharma J et al (2005) The relationship between whole brain volume and disability in multiple sclerosis: a comparison of normalized gray vs. white matter with misclassification correction. Neuroimage 26:1068–1077

    Article  PubMed  Google Scholar 

  138. Zivadinov R, Leist TP (2005) Clinical-magnetic resonance imaging correlations in multiple sclerosis. J Neuroimaging 15(4 Suppl):10S–21S

    Article  PubMed  Google Scholar 

  139. Tedeschi G, Lavorgna L, Russo P et al (2005) Brain atrophy and lesion load in a large population of patients with multiple sclerosis. Neurology 65:280–285

    Article  PubMed  CAS  Google Scholar 

  140. Valsasina P, Benedetti B, Rovaris M et al (2005) Evidence for progressive gray matter loss in patients with relapsing-remitting MS. Neurology 65:1126–1128

    Article  PubMed  CAS  Google Scholar 

  141. Sastre-Garriga J, Ingle GT, Chard DT et al (2005) Grey and white matter volume changes in early primary progressive multiple sclerosis: a longitudinal study. Brain 128:1454–1460

    Article  PubMed  Google Scholar 

  142. Amato MP, Bartolozzi ML, Zipoli V et al (2004) Neocortical volume decrease in relapsing-remitting MS patients with mild cognitive impairment. Neurology 63:89–93

    PubMed  CAS  Google Scholar 

  143. Amato MP, Portaccio E, Goretti B et al (2007) Association of neocortical volume changes with cognitive deterioration in relapsing-remitting multiple sclerosis. ArchNeurol 64:1157–1161

    Google Scholar 

  144. Sanfilipo MP, Benedict RH, Weinstock-Guttman B et al (2006) Gray and white matter brain atrophy and neuropsychological impairment in multiple sclerosis. Neurology 66:685–692

    Article  PubMed  Google Scholar 

  145. Bermel RA, Bakshi R, Tjoa C et al (2002) Bicaudate ratio as a magnetic resonance imaging marker of brain atrophy in multiple sclerosis. Arch Neurol 59:275–280

    Article  PubMed  Google Scholar 

  146. Houtchens MK, Benedict RH, Killiany R et al (2007) Thalamic atrophy and cognition in multiple sclerosis. Neurology 69:1213–1223

    Article  PubMed  CAS  Google Scholar 

  147. Sicotte NL, Kern KC, Giesser BS et al (2008) Regional hippocampal atrophy in multiple sclerosis. Brain 131:1134–1141

    Article  PubMed  CAS  Google Scholar 

  148. Tedeschi G, Dinacci D, Lavorgna L et al (2007) Correlation between fatigue and brain atrophy and lesion load in multiple sclerosis patients independent of disability. J Neurol Sci 263:15–19

    Article  PubMed  Google Scholar 

  149. Bakshi R, Czarnecki D, Shaikh ZA et al (2000) Brain MRI lesions and atrophy are related to depression in multiple sclerosis. Neuroreport 11:1153–1158

    Article  PubMed  CAS  Google Scholar 

  150. Zorzon M, Zivadinov R, Nasuelli D et al (2002) Depressive symptoms and MRI changes in multiple sclerosis. Eur J Neurol 9:491–496

    Article  PubMed  CAS  Google Scholar 

  151. Feinstein A, Roy P, Lobaugh N et al (2004) Structural brain abnormalities in multiple sclerosis patients with major depression. Neurology 62:586–590

    PubMed  CAS  Google Scholar 

  152. Prinster A, Quarantelli M, Orefice G et al (2006) Grey matter loss in relapsing-remitting multiple sclerosis: a voxel-based morphometry study. Neuroimage 29:859–867

    Article  PubMed  CAS  Google Scholar 

  153. Ceccarelli A, Rocca MA, Pagani E et al (2008) A voxel-based morphometry study of grey matter loss in MS patients with different clinical phenotypes. Neuroimage 42:315–322

    Article  PubMed  Google Scholar 

  154. Morgen K, Sammer G, Courtney SM et al (2006) Evidence for a direct association between cortical atrophy and cognitive impairment in relapsing-remitting MS. Neuroimage 30:891–898

    Article  PubMed  Google Scholar 

  155. Henry RG, Shieh M, Okuda DT et al (2008) Regional grey matter atrophy in clinically isolated syndromes at presentation. J Neurol Neurosurg Psychiatry 79:1236–1244

    Article  PubMed  CAS  Google Scholar 

  156. Prinster A, Quarantelli M, Lanzillo R et al (2010) A voxel-based morphometry study of disease severity correlates in relapsing-remitting multiple sclerosis. Mult Scler 16:45–54

    Article  PubMed  CAS  Google Scholar 

  157. Sepulcre J, Masdeu JC, Goñi J et al (2009) Fatigue in multiple sclerosis is associated with the disruption of frontal and parietal pathways. Mult Scler 15:337–344

    Article  PubMed  CAS  Google Scholar 

  158. Andreasen AK, Jakobsen J, Soerensen L et al (2010) Regional brain atrophy in primary fatigued patients with multiple sclerosis. J Neuroimage 50:608–615

    Article  CAS  Google Scholar 

  159. Chen JT, Narayanan S, Collins DL et al (2004) Relating neocortical pathology to disability progression in multiple sclerosis using MRI. Neuroimage 23:1168–1175

    Article  PubMed  CAS  Google Scholar 

  160. Charil A, Dagher A, Lerch JP et al (2007) Focal cortical atrophy in multiple sclerosis: relation to lesion load and disability. Neuroimage 34:509–517

    Article  PubMed  Google Scholar 

  161. Ramasamy DP, Benedict RH, Cox JL et al (2009) Extent of cerebellum, subcortical and cortical atrophy in patients with MS: a case-control study. J Neurol Sci 282:47–54

    Article  PubMed  Google Scholar 

  162. Calabrese M, Rinaldi F, Mattisi I et al (2010) Widespread cortical thinning characterizes patients with MS with mild cognitive impairment. Neurology 74:321–328

    Article  PubMed  CAS  Google Scholar 

  163. Calabrese M, Atzori M, Bernardi V et al (2007) Cortical atrophy is relevant in multiple sclerosis at clinical onset. J Neurol 254:1212–1220

    Article  PubMed  Google Scholar 

  164. Pellicano C, Gallo A, Li X et al (2010) Relationship of cortical atrophy to fatigue in patients with multiple sclerosis. Arch Neurol 67:447–453

    Article  PubMed  Google Scholar 

  165. Filippi M, Rocca MA (2009) Functional MR imaging in multiple sclerosis. Neuroimaging Clin NAm 19:59–70

    Article  Google Scholar 

  166. Genova HM, Sumowski JF, Chiaravalloti N et al (2009) Cognition in multiple sclerosis: a review of neuropsychological and fMRI research. Front Biosci 14:1730–1744

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Italia

About this chapter

Cite this chapter

Gallo, A., Tedeschi, G. (2011). Neuroradiologia e sclerosi multipla. In: Nocentini, U., Caltagirone, C., Tedeschi, G. (eds) I disturbi neuropsichiatrici nella sclerosi multipla. Springer, Milano. https://doi.org/10.1007/978-88-470-1711-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-1711-5_2

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-1710-8

  • Online ISBN: 978-88-470-1711-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics