Skip to main content

Monitoring of Respiratory Mechanics in the Intensive Care Unit: Models, Techniques and Measurement Methods

  • Chapter
Book cover Respiratory System and Artificial Ventilation
  • 1873 Accesses

Abstract

Any assessment of respiratory-system mechanics from measured data is strongly dependent on the model adopted to describe the structure of the respiratory system and its components: airways, lung and chest wall. Sometime, the model may be very complex, with multiple alveolar compartments and airway branches representing the tracheo-bronchial tree, or many chest-wall structures representing the rib cage, the respiratory muscles and the abdomen. This modelling approach is used mainly for research purposes, when an analytical description is required to study the respiratory system in detail and data that cannot be obtained in humans are available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fredberg JJ, Keefe DH, Glass GM et al (1984) Alveolar pressure nonhomogeneity during small-amplitude high-frequency oscillation. J Appl Physiol 57:788–800

    PubMed  CAS  Google Scholar 

  2. Fredberg JJ, Ingram RH Jr, Castile RG et al (1985) Nonhomogeneity of lung response to inhaled histamine assessed with alveolar capsules. J Appl Physiol 58:1914–1922

    PubMed  CAS  Google Scholar 

  3. Ludwig MS, Dreshaj I, Solway J et al (1987) Partitioning of pulmonary resistance during constriction in the dog: effects of volume history. J Appl Physiol 62:807–815

    PubMed  CAS  Google Scholar 

  4. Sato J, Davey BL, Shardonofsky F, Bates JH (1991) Low-frequency respiratory system resistance in the normal dog during mechanical ventilation. J Appl Physiol 70:1536–1543

    PubMed  CAS  Google Scholar 

  5. Hantos Z, Daroczy B, Suki B, Nagy S (1987) Low-frequency respiratory mechanical impedance in the rat. J Appl Physiol 63:36–43

    PubMed  CAS  Google Scholar 

  6. Hantos Z, Daroczy B, Suki B et al (1992) Input impedance and peripheral inhomogeneity of dog lungs. J Appl Physiol 72:168–178

    Article  PubMed  CAS  Google Scholar 

  7. Bates JH, Abe T, Romero PV, Sato J (1989) Measurement of alveolar pressure in closedchest dogs during flow interruption. J Appl Physiol 67:488–492

    PubMed  CAS  Google Scholar 

  8. Bersten AD (1998) Measurement of overinflation by multiple linear regression analysis in patients with acute lung injury. Eur Respir J 12:526–532

    Article  PubMed  CAS  Google Scholar 

  9. Wagers S, Lundblad L, Moriya HT et al (2002) Nonlinearity of respiratory mechanics during bronchoconstriction in mice with airway inflammation. J Appl Physiol 92:1802–1807

    PubMed  Google Scholar 

  10. Roupie E, Dambrosio M, Servillo G et al (1995) Titration of tidal volume and induced hypercapnia in acute respiratory distress syndrome. Am J Respir Crit Care Med 152:121–128

    PubMed  CAS  Google Scholar 

  11. Nunes S, Uusaro A, Takala J (2004) Pressure-volume relationships in acute lung injury: methodological and clinical implications. Acta Anaesthesiol Scand 48:278–286

    Article  PubMed  CAS  Google Scholar 

  12. Salazar E, Knowles JH (1964) An analysis of pressure-volume characteristics of the lungs. J Appl Physiol 19:97–104

    PubMed  CAS  Google Scholar 

  13. Hickling KG (1998) The pressure-volume curve is greatly modified by recruitment. A mathematical model of ARDS lungs. Am J Respir Crit Care Med 158:194–202

    PubMed  CAS  Google Scholar 

  14. Matamis D, Lemaire F, Harf A et al (1984) Total respiratory pressure-volume curves in the adult respiratory distress syndrome. Chest 86:58–66

    Article  PubMed  CAS  Google Scholar 

  15. Gattinoni L, Pesenti A, Avalli L et al (1987) Pressure-volume curve of total respiratory system in acute respiratory failure. Computed tomographic scan study. Am Rev Respir Dis 136:730–736

    PubMed  CAS  Google Scholar 

  16. Dall’Ava-Santucci J, Armaganidis A, Brunet F (1988) Causes of error of respiratory pressure-volume curves in paralyzed subjects. J Appl Physiol 64:42–49

    PubMed  CAS  Google Scholar 

  17. Gattinoni L, Mascheroni D, Basilico E et al (1987) Volume/pressure curve of total respiratory system in paralyzed patients: artifacts and correction factors. Intensive Care Med 13:19–25

    Article  PubMed  CAS  Google Scholar 

  18. Sydow M, Burchardi H, Zinserling J et al (1991) Improved determination of static compliance by automated single volume steps in ventilated patients. Intensive Care Med 17:108–114

    Article  PubMed  CAS  Google Scholar 

  19. Chiumello D, Carlesso E, Aliverti A et al (2007) Effects of volume shift on the pressure-volume curve of the respiratory system in ALI/ARDS patients. Minerva Anestesiol 73:109–118

    PubMed  CAS  Google Scholar 

  20. Benito S, Lemaire F, Mankikian B, Harf A (1985) Total respiratory compliance as a function of lung volume in patients with mechanical ventilation. Intensive Care Med 11:76–79

    PubMed  CAS  Google Scholar 

  21. Lachmann B (1992) Open up the lung and keep the lung open. Intensive Care Med 18:319–321

    Article  PubMed  CAS  Google Scholar 

  22. Ranieri VM, Eissa NT, Corbeil C et al (1991) Effects of positive end-expiratory pressure on alveolar recruitment and gas exchange in patients with the adult respiratory distress syndrome. Am Rev Respir Dis 144:544–551

    PubMed  CAS  Google Scholar 

  23. Servillo G, Svantesson C, Beydon L et al (1997) Pressure-volume curves in acute respiratory failure. Automated low flow inflation versus occlusion. Am J Respir Crit Care Med 155:1629–1636

    PubMed  CAS  Google Scholar 

  24. Lu Q, Vieira S, Richecoeur J et al (1999) A simple automated method for measuring pressure-volume curve during mechanical ventilation. Am J Respir Crit Care Med 159:275–282

    PubMed  CAS  Google Scholar 

  25. Suratt PM, Owens DH, Kilgore WT et al (1980) A pulse method of measuring respiratory system compliance. J Appl Physiol 49:1116–1121

    PubMed  CAS  Google Scholar 

  26. Suratt PM, Owens DH (1981) A pulse method of measuring respiratory system compliance in ventilated patients. Chest 80:34–38

    Article  PubMed  CAS  Google Scholar 

  27. Ranieri VM, Giuliani R, Flore T et al (1994) Volume-pressure curve of the respiratory system predicts effects of PEEP in ARDS: ‘occlusion’ versus ‘constant flow’ technique. Am J Respir Crit Care Med 149:19–27

    PubMed  CAS  Google Scholar 

  28. Jonson B, Richard JC, Straus C et al (1999) Pressure-volume curves and compliance in acute lung injury. Am J Respir Crit Care Med 159:1172–1178

    PubMed  CAS  Google Scholar 

  29. Rodriguez L, Marquer B, Mardrus P et al (1999) A new simple method to perform pressure-volume curves obtained under quasi-static conditions during mechanical ventilation. Intensive Care Med 25:173–179

    Article  PubMed  CAS  Google Scholar 

  30. Bates JH, Brown KA, Kochi T (1989) Respiratory mechanics in the normal dog determined by expiratory flow interruption. J Appl Physiol 67:2276–2285

    PubMed  CAS  Google Scholar 

  31. Kaczka DW, Ingenito EP, Israel E, Lutchen KR (1999) Airway and lung tissue mechanics in asthma. Effects of albuterol. Am J Respir Crit Care Med 159:169–178

    PubMed  CAS  Google Scholar 

  32. Lutchen KR, Greenstein JL, Suki B (1996) How inhomogeneities and airway walls affect frequency dependence and separation of airway and tissue properties. J Appl Physiol 80:1696–1707

    PubMed  CAS  Google Scholar 

  33. Similowski T, Bates JHT (1991) Two compartment modelling of respiratory system mechanics at low frequencies: gas redistribution or tissue rheology? Eur Respir J 4:353–358

    PubMed  CAS  Google Scholar 

  34. Roupie E, Dambrosio M, Servillo G et al (1995) Titration of tidal volume and induced hypercapnia in acute respiratory distress syndrome. Am J Respir Crit Care Med 152:121–128

    PubMed  CAS  Google Scholar 

  35. Amato MBP, Barbas CSV, Mediros DM et al (1998) Effect of a protective ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354

    Article  PubMed  CAS  Google Scholar 

  36. Ranieri VM, Mascia LM, Fiore T et al (1995) Cardiorespiratory effects of positive end-expiratory pressure during progressive tidal volume reduction (permissive hypercapnia) in patients with acute respiratory distress syndrome. Anesthesiology 83:710–720

    Article  PubMed  CAS  Google Scholar 

  37. Romero PV, Sato J, Shardonofsky F, Bates JH (1990) High-frequency characteristics of respiratory mechanics determined by flow interruption. J Appl Physiol 69:1682–1688

    PubMed  CAS  Google Scholar 

  38. Bates JH, Ludwig MS, Sly PD et al (1988) Interrupter resistance elucidated by alveolar pressure measurement in open chest normal dogs. J Appl Physiol 65:408–414

    PubMed  CAS  Google Scholar 

  39. Ludwig MS, Romero PV, Sly PD et al (1990) Interpretation of interrupter resistance after histamine-induced constriction in the dog. J Appl Physiol 68:1651–1656

    PubMed  CAS  Google Scholar 

  40. Bates JH, Baconnier P, Milic-Emili J (1988) A theoretical analysis of interrupter technique for measuring respiratory mechanics. J Appl Physiol 64:2204–2214

    PubMed  CAS  Google Scholar 

  41. Bates JH, Rossi A, Milic-Emili J (1985) Analysis of the behavior of the respiratory system with constant inspiratory flow. J Appl Physiol 58:1840–1848

    PubMed  CAS  Google Scholar 

  42. Frey U, Silverman M, Kraemer R, Jackson AC (1998) High-frequency respiratory input impedance measurements in infants assessed by the high speed interrupter technique. Eur Respir J 12:148–158

    Article  PubMed  CAS  Google Scholar 

  43. DuBois AB, Brody AW, Lewis DH, Burgess BF (1956) Oscillation mechanics of lungs and chest in man. J Appl Physiol 8:587–594

    PubMed  CAS  Google Scholar 

  44. Oostven E, Macleod D, Lorino H et al (2003) The forced oscillation technique in clinical practice: methodology, recommendations and future developments. Eur Respir J 22:1026–1041

    Article  Google Scholar 

  45. Hantos Z, Daroczy B, Suki B et al (1992) Input impedance and peripheral inhomogeneity of dog lungs. J Appl Physiol 72:168–178

    Article  PubMed  CAS  Google Scholar 

  46. Dellaca RL, Santus P, Aliverti A et al (2004) Detection of expiratory flow limitation in COPD using the forced oscillation technique. Eur Respir J 23:232–240

    Article  PubMed  CAS  Google Scholar 

  47. Peslin R, Farre R, Rotger M, Navajas D (1996) Effect of expiratory flow limitation on respiratory mechanical impedance: a model study. J Appl Physiol 81:2399–2406

    PubMed  CAS  Google Scholar 

  48. Dellaca RL, Rotger M, Aliverti A et al (2006) Noninvasive detection of expiratory flow limitation in COPD patients during nasal CPAP. Eur Respir J 27:983–991

    PubMed  CAS  Google Scholar 

  49. Randerath WJ, Schraeder O, Galetke W et al (2001) Autoadjusting CPAP therapy based on impedance efficacy, compliance and acceptance. Am J Respir Crit Care Med 163:652–657

    PubMed  CAS  Google Scholar 

  50. Badia JR, Farre R, Rigau J et al (2001) Forced oscillation measurements do not affect upper airway muscle tone or sleep in clinical studies. Eur Respir J 18:335–339

    Article  PubMed  CAS  Google Scholar 

  51. Bates JHT, Sly PD, Sato J et al (1992) Correcting for the Bernoulli effect in lateral pressure measurements. Pediatr Pulmonol 12:251–256

    Article  PubMed  CAS  Google Scholar 

  52. Navalesi P, Hernandez P, Laporta D et al (1994) Influence of site of tracheal pressure measurement on in situ estimation of endotracheal tube resistance. J Appl Physiol 77:2899–2906

    PubMed  CAS  Google Scholar 

  53. Baydur A, Behrakis PK, Zin WA et al (1982) A simple method for assessing the validity of the esophageal balloon technique. Am Rev Respir Dis 126:788–791

    PubMed  CAS  Google Scholar 

  54. Dechman G, Sato J, Bates JHT (1992) Factors affecting the accuracy of esophageal balloon measurement of pleural pressure in dogs. J Appl Physiol 72:383–388

    PubMed  CAS  Google Scholar 

  55. Kárason S, Karlsen KL, Lundin S, Stenqvist O (1999) A simplified method for separate measurements of lung and chest wall mechanics in ventilator-treated patients. Acta Anaesthesiol Scand 43(3):308–315

    Article  PubMed  Google Scholar 

  56. Peslin R, Navajas D, Rotger M, Farre R (1993) Validity of the esophageal balloon technique at high frequencies. J Appl Physiol 74:1039–1044

    PubMed  CAS  Google Scholar 

  57. Panizza JA (1992) Comparison of balloon and transducer catheters for estimating lung elasticity. J Appl Physiol 72:231–235

    PubMed  CAS  Google Scholar 

  58. Iberti TJ, Kelly KM, Gentili DR, Hirsch S (1987) A simple technique to accurately determine intra-abdominal pressure. Crit Care Med 15:1140–1142

    Article  PubMed  CAS  Google Scholar 

  59. Collee GG, Lomax DM, Ferguson C, Hanson GC (1993) Bedside measurement of intraabdominal pressure (IAP) via an indwelling naso-gastric tube: clinical validation of the technique. Intensive Care Med 19(8):478–480

    Article  PubMed  CAS  Google Scholar 

  60. Chieveley-Williams S, Dinner L, Puddicombe A et al (2002) Central venous and bladder pressure reflect transdiaphragmatic pressure during pressure support ventilation. Chest 121:533–538

    Article  PubMed  Google Scholar 

  61. Jackson AC, Vinegar A (1979) A technique for measuring frequency response of pressure, volume, and flow transducers. J Appl Physiol 47:462–467

    PubMed  CAS  Google Scholar 

  62. Schibler A, Hall GL, Businger F et al (2002) Measurement of lung volume and ventilation distribution with an ultrasonic flow meter in healthy infants. Eur Respir J 20:912–918

    Article  PubMed  CAS  Google Scholar 

  63. Clary AL, Fouke JM (1991) Fast-responding automated airway temperature probe. Med Biol Eng Comput 29:501–504

    Article  PubMed  CAS  Google Scholar 

  64. Bates JH, Schmalisch G, Filbrun D, Stocks J (2000) Tidal breath analysis for infant pulmonary function testing. Eur Respir J 16:1180–1192

    Article  PubMed  CAS  Google Scholar 

  65. Schmalisch G, Foitzik B, Wauer RR, Stocks J (2001) In vitro assessment of equipment and software used to assess tidal breathing parameters in infants. Eur Respir J 17(1): 100–107

    Article  PubMed  CAS  Google Scholar 

  66. Cohen KP, Ladd WM, Beams DM et al (1997) Comparison of impedance and inductance ventilation sensors on adults during breathing, motion, and simulated airway obstruction. IEEE Trans Biomed Eng 44:555–566

    Article  PubMed  CAS  Google Scholar 

  67. Cala SJ, Kenyon C, Ferrigno G et al (1996) Chest wall and lung volume estimation by optical reflectance motion analysis. J Appl Physiol 81:2680–2689

    PubMed  CAS  Google Scholar 

  68. Aliverti A, Dellacá R, Pelosi P et al (2001) Compartmental analysis of breathing in the supine and prone positions by Opto-Electronic Plethysmography. Ann Biomed Eng 29:60–70

    Article  PubMed  CAS  Google Scholar 

  69. Aliverti A, Dellacá R, Pelosi P et al (2000) Opto-electronic plethysmography in intensive care patients. Am J Respir Crit Care Med 161:1546–1552

    PubMed  CAS  Google Scholar 

  70. Dellacà RL, Aliverti A, Pelosi P et al (2001) Estimation of end-expiratory lung volume variations by opto-electronic plethysmography (OEP). Crit Care Med 29:1807–1811

    Article  PubMed  Google Scholar 

  71. Gattinoni L, Pelosi P, Crotti S et al (1995) Effects of positive end-expiratory pressure on regional distribution of tidal volume and recruitment in adult respiratory distress syndrome. Am J Respir Crit Care Med 151:1807–1814

    PubMed  CAS  Google Scholar 

  72. Guerin C, Tantucci C (1999) Respiratory mechanics in intensive care unit. Eur Respir Mon 12:255–278

    Google Scholar 

  73. Aliverti A, Cala SJ, Duranti R et al (1997) Human respiratory muscle actions and control during exercise. J Appl Physiol 83:1256–1269

    PubMed  CAS  Google Scholar 

  74. Rahn H, Otis AB, Chadwick LE, Fenn WO (1946) The pressure-volume diagram of the thorax and lung. Am J Physiol 146:161–178

    Google Scholar 

  75. Aliverti A, Iandelli I, Duranti R et al (2002) Respiratory muscle dynamics and control during exercise with externally imposed expiratory flow-limitation. J Appl Physiol 92:1953–1963

    PubMed  Google Scholar 

  76. Aliverti A, Carlesso E, Dellacà RL et al (2006) Chest wall mechanics during pressure support ventilation. Crit Care 10:R54

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Aliverti, A. (2008). Monitoring of Respiratory Mechanics in the Intensive Care Unit: Models, Techniques and Measurement Methods. In: Lucangelo, U., Pelosi, P., Zin, W.A., Aliverti, A. (eds) Respiratory System and Artificial Ventilation. Springer, Milano. https://doi.org/10.1007/978-88-470-0765-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-0765-9_6

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0764-2

  • Online ISBN: 978-88-470-0765-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics