Skip to main content
  • 1097 Accesses

Abstract

Camellia species, being a woody perennial with more than 100 years of life span, it experiences several abiotic and biotic stresses (ABstress) throughout its life. Conventional breeding is protracted and restricted principally to selection, which escorts to taper down of its genetic base. Predominantly being strict monoculture cultivation, the plants countenance pest populations that are dreadful and unique. Young leaves are economically important parts and AB stresses are extremely detrimental to production. For instance, drought alone accounts for 40% loss of yield of tea per annum. Despite constraints, commendable efforts have been perpetrated to appreciate the physiological as well as biochemical alterations of an assortment of abiotic stresses encountered by these plants. Thus, this chapter presents a consolidated account of the accomplishment and inadequacy of these tools and techniques hitherto applied to the plants. Expectedly, this will form a foundation for making further advances intended for improvement of tea and other economically important wild relatives, in particular, belongs to Camellia spp.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • A-H-Mackerness S, Jordan BR, Thomas B (1997) UV-B effects on the expression of genes encoding proteins involved in photosynthesis. In: Lumsden PJ (ed) Plant and UV-B: responses to environmental change. Cambridge University Press, Cambridge, pp 113–114

    Google Scholar 

  • Anandacoomaraswamy A, De Costa WAJM, Shyamalie HW, Campbell GS (2000) Factors controlling transpiration of mature field-grown tea and its relationship with yield. Agri Forest Meteor 103:375–386

    Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Ann Rev Plant Biol 55:373–399

    CAS  Google Scholar 

  • Bagyalakshmi B, Ponmurugan P, Marimuthu S (2012) Influence of potassium solubilizing bacteria on crop productivity and quality of tea (Camellia sinensis). African J Agric Res 7:4250–4259

    Google Scholar 

  • Barman TS, Baruah U, Saikia JK (2008) Irradiation influences tea leaf (Camellia sinensis L.) photosynthesis and transpiration. Photosynth 46:618–621

    CAS  Google Scholar 

  • Barua DN (1969) Light as a factor in metabolism of tea plant pp 306–322. In: Luckwill LC and C V Cuttings (Eds) Physiology of tree Crops. Academic Press, New York

    Google Scholar 

  • Barua DN (1989) Science and practice in tea culture. Tea Research Association, Kolkata, p P

    Google Scholar 

  • Basak M, Sharma M, Chakraborty U (2001) Biochemical responses of Camellia sinensis (L.) O. Kuntze to heavy metal stress. J Environ Biol 22:37–41

    CAS  PubMed  Google Scholar 

  • Bhagat I, Chakraborty BN (2010) Defense response triggered by Sclerotium rolfsii in tea plants. Ecoprint 17:69–76

    Google Scholar 

  • Bore, JK (2008) Weather and tea yields. Tea 29, 57–58

    Google Scholar 

  • Burgess PJ, Carr MVK (1996) Responses of young tea (Camellia sinensis) clones to drought and temperature. II. Dry matter production and partitioning. Exper Agric 32:377–394

    Google Scholar 

  • Cao P, Liu C, Li D (2011a) Effects of different autotoxins on antioxidant enzymes and chemical compounds in tea (Camellia sinensis L.) Kuntze. Afr J Biotech 10:7480–7486

    CAS  Google Scholar 

  • Cao Z, Zhang S, Liu C, Hu J, Zhang X, Shu Q (2011b) Effects of dehydration degree on the physiological and chemical characteristics of Camellia oleifera seedlings. J Anhui Agric Univ 3:2011–2003

    Google Scholar 

  • Cao Z, Hu J, Shu Q, Wen J, Zhan W, Xu G, Bu J (2011c) Effects of water stress on physical characteristics and survival rate of container seedling in Camellia oleifera. Non-wood Forest Res 2011–2004

    Google Scholar 

  • Carr HP, Lombi E, Küpper H, McGrath SP, Wong MH (2003) Accumulation and distribution of aluminium and other elements in tea (Camellia sinensis) leaves. Agronomie 23:705–710

    CAS  Google Scholar 

  • Chakraborty U, Dutta S, Chakraborty BN (2002) Response of tea plants to water stress. Biol Plant 45:557–562

    CAS  Google Scholar 

  • Chakraborty U, Chakraborty BN (2005) Impact of environmental factors on infestation of tea leaves by Helopeltis theivora, and associated changes in flavonoid flavour components and enzyme activities. Phytopara 33:88–96

    CAS  Google Scholar 

  • Chakraborty U, Chakraborty BN, Basnet M (2006) Plant growth promotion and induction of resistance in Camellia sinensis by Bacillus megaterium. J Basic Microb 46:186–195

    CAS  Google Scholar 

  • Chakraborty U, Chakraborty BN, Chakraborty AP (2012) Induction of plant growth promotion in Camellia sinensis by Bacillus megaterium and its bioformulations. World J Agric Sci 8:104–112

    Google Scholar 

  • Chamuah GS (1988) The effect of nitrogen in root growth and nutrient uptake of young tea plant (Camellia sinensis) grown in sand culture. Fert Res 16:59–65

    Google Scholar 

  • Cheruiyot EK, Mumera LM, Ngetich WK, Hassanali A, Wachira FN (2007) Polyphenol as potention indicators for drought tolerance in tea (Camellia sinensis L. ). Biosci Biotech Biochem 71:2190–2197

    CAS  Google Scholar 

  • Cheruiyot EK, Mumera LM, Ng’etich WK, Hassanali A, Wachira FN, Wanyoko JK (2008) Shoot epicatechin and epigallocatechin contents respond to water stress in tea (Camellia sinensis (L.) O. Kuntze). Biosci Biotechnol Biochem 72:1–8

    Google Scholar 

  • Chen YM, Tsao TM, Liu CC, Lin KC, Wang MK (2011a) Aluminium and nutrients induce changes in the profiles of phenolic substances in tea plants (Camellia sinensis CV TTES, No. 12 (TTE)). J Sci Food Agric 91:1111–1117

    CAS  Google Scholar 

  • Chen Q, Yang L, Ahmad P, Wan X, Hu X (2011b) Proteomic profiling and redox status alteration of recalcitrant tea (Camellia sinensis) seed in response to desiccation. Planta 233:583–592

    CAS  Google Scholar 

  • Chen L, Chen Y, Wang R, Ma L, Peng S, Wang X, Tang W (2011c) The effects of phosphorus deficiency stress on activities of acid phosphatase in different clones of Camellia oleifera Abel. Chinese Agric Sci Bull 6:2011–2031

    Google Scholar 

  • Das GM (1965) Pests of tea in North East India and their control. Memorandom No. 27, Tocklai Experimental Station, Tea Research Association, Jorhat, Assam, India. pp 169–173

    Google Scholar 

  • De Costa WAJM, Mohotti AJ, Wijeratne MA (2007) Ecophysiology of tea. Braz J Plant Physiol 19:299–332

    CAS  Google Scholar 

  • Deng WW, Wang S, Chen Q, Zhang ZZ, Hu XY (2012) Effect of salt treatment on theanine biosynthesis in Camellia sinensis seedlings. Plant Physiol Biochem 56:35–40

    CAS  PubMed  Google Scholar 

  • Du YY, Chen H, Zhong WL, Wu LY, Ye JH, Lin C, Zheng XQ, Lu JL, Liang YR (2008) Effect of temperature on accumulation of chlorophylls and leaf ultrastructure of low temperature induced albino tea plant. Afr J Biotechnol 7:1881–1885

    Google Scholar 

  • Forrest GI (1969) Effects of light and darkness on polyphenol distribution in the tea plant (Camellia sinensis L.). Biochem J 113:773–781

    CAS  PubMed  Google Scholar 

  • Frederick JE, Snell HE, Haywood EK (1989) Solar ultraviolet radiation at the Earth’s surface. Photochem Photobiol 50:443–450

    CAS  Google Scholar 

  • Fung KF, Zhang ZQ, Wong JWC, Wong MH (2003) Aluminum and fluoride concentrations of three tea varieties growing at Lantau island, Hong Kong. Environ Geochem Health 25:219–232

    CAS  PubMed  Google Scholar 

  • Ghanati F, Morita A, Yokota H (2005) Effects of aluminum on the growth of tea plant and activation of antioxidant system. Plant Soil 276:133–141

    CAS  Google Scholar 

  • Gnanamangai BM, Ponmurugan P, Yazhini R, Pragadeesh SK (2011) PR enzyme activities of Cercospora theae bird’s eye spot disease in tea plants (Camellia sinensis (L.) O. kuntze). Plant Patho J 10:13–21

    CAS  Google Scholar 

  • Gohain T, Barbora AC, Deka A (2000) Effect of manganese on growth, yield and quality of tea (Camellia sinensis L. (O) Kuntez). Res Crops 1:91–97

    Google Scholar 

  • Gulati A, Gulati A, Rabindranat SD, Gupta AK (1999) Variation in chemical composition and quality of tea (Camellia sinensis) with increasing blister blight (Exobasidium vexans) severity. Mycol Res 103:1380–1384

    Google Scholar 

  • Guo CF, Sun Y, Tang YH, Zhang MQ (2009) Effect of water stresson chlorophyll fluorescence in leaves of tea plant. Chinese J Eco-Agri 17:560–564

    CAS  Google Scholar 

  • Gupta D, Bhardwaj R, Nagar PK, Kaur S (2004) Isolation and characterization of brassinosteroides from leaves of Camellia sinensis (L.) O. Kuntze. Plant Growth Regu 42:97–100

    Google Scholar 

  • Gurusubramanian G, Borthakur M (2005) Integrated management of tea pests. In: Dutta AK, Baruah SK, Ahmed N, Sarma AK, Burugohain D (ed) Field management in tea. Tocklai Experimental Station, TRA, Jorhat, Assam Printing Works Pvt Ltd, Jorhat, pp 159–172

    Google Scholar 

  • Hajra NG, Kumar R (2002) Responses of young tea clones to subtropical climate: effect on photosynthesis and biochemical characteristic. J Plant Biol 29:257–264

    Google Scholar 

  • Hajiboland R, Bastani S, Rad SB (2011a) Photosynthesis, nitrogen metabolism and antioxidant defense system in B-deficient tea (Camellia sinensis (L.) O. Kuntze) plants. J Sci 22:311–320

    CAS  Google Scholar 

  • Hajiboland R, Bastani S, Rad SB (2011b) Effect of light intensity on photosynthesis and antioxidant defense in boron deficient tea plants. Acta Biol Szeged 55:265–272

    Google Scholar 

  • Hajiboland R, Bastani S (2012) Tolerance to water stress in boron deficient tea (Camellia sinensis) plants. Folia Horti 24:41–45

    Google Scholar 

  • Hajiboland R, Bahrami-Rad S, Bastani S (2013) Phenolics metabolism in boron-deficient tea (Camellia sinensis (L.) O. Kuntze) plants. Acta Biol Hung 64:196–206

    CAS  PubMed  Google Scholar 

  • Han WY, Shi YZ, Ma LF, Ruan JY, Zhao FJ (2007) Effect of liming and seasonal variation on lead concentration of tea plant (Camellia sinensis (L.) O. Kuntze). Chemosph 66:84–90

    CAS  Google Scholar 

  • Handique AC, Manivel L (1990) Effect of certain anti-transpirants in tea. Two Bud 37:20–23

    Google Scholar 

  • He Y, Lu F (2008) Study on the photosynthesis of the different density of Camellia Oleifera. Modern Agric Sci 5:2003–2008

    Google Scholar 

  • He G, Liu Q, Peng S (2010) Effect of Aluminum toxicity on photosynthetic characters of wild Camellia oleifera under acidic conditions. Hubei Agric Sci 2010–2017

    Google Scholar 

  • He XY, Ye H, Ma JL, Zhang RQ, Chen GC, Xia YY (2012) Semi-lethal high temperature and heat tolerance of eight Camellia species. Int J Exp Bot 81:177–180

    Google Scholar 

  • Hemalatha K, Venkatesan S (2011) Impact of iron toxicity on certain enzymes and biochemical parameters of tea. Asian J Biotech 6:384–394

    CAS  Google Scholar 

  • Hernandez I, Alegre L, Munné-Bosch S (2006) Enhanced oxidation of flavan-3-ols and proanthocyanidin accumulation in water-stressed tea plants. Phytochem 67:1120–1126

    CAS  Google Scholar 

  • Hu Z (1998) Delayed action of 6-BA on detached-leaves senescence in Camellia oleifera. J Fujinan College For 3:1998–1901

    Google Scholar 

  • Hu Z, Shen W, Zhang Y (1993) Physiological effect of paclobutrazol on the growth of Camellia oleifera seedling. J Fuji College For 1993–1902

    Google Scholar 

  • Hu Q, Xu J, Pang G (2003) Effect of selenium on the yield and quality of green tea leaves harvested in early spring. J Agric Food Chem 51:3379–3381

    CAS  PubMed  Google Scholar 

  • Hu XH, Li JW, Jiang QS, Zhao RF (2010) Responses of leaf characters of Camellia nitidissima to different light environments. Guihaia 5:201–203

    Google Scholar 

  • Huang Y, Yuan Z, Zhong W, Zhang H, Dong B (2009) Effects of ~ (60)Co-γ radiation on isozyme activity of Camellia Oleifera seedling. Nonwood For Res 4:200–202

    Google Scholar 

  • Huiqun M, Yuchen R (1987) Relationship between zinc and the metabolism of tea plant. J Tea Sci (China) 7:35–40

    Google Scholar 

  • Iwanami Y (1973) Acceleration of the growth of Camellia sasanqua pollen by soaking in organic solvent. Plant Physiol 52:508–509

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jayaganesh S, Venkatesan S, Senthurpandian VK (2011) Impact of different sources and doses of magnesium fertilizer on biochemical constituents and quality parameters of black tea. Asian J Biochem 6:273–281

    CAS  Google Scholar 

  • Jeyaramraja PR, Jayakumar D, Pius PK, Kumar RR (2002a) Screening of certain tea cultivars for productivity and drought hariness using biochemical markers. J Plant Crop 30:23–26

    Google Scholar 

  • Jeyaramraja PR, Jayakumar D, Pius PK, Kumar RR (2002b) Application of rubisco, peroxidase and polyphenol oxidase as markers for productivity and drought tolerance in tea. J Plant Biol 29:315–320

    Google Scholar 

  • Jeyaramraja PR, Pius PK, Kumar RR, Jayakumar D (2003a) Soil moisture stress-induced alterations in bioconstituents determining tea quality. J Sci Food Agric 83:1187–1191

    CAS  Google Scholar 

  • Jeyaramraja PR, Raj Kumar R, Pius PK, Thomas J (2003b) Photoassimilatory and photorespiratory behavior of certain drought tolerant and susceptible tea clones. Photosynthe 41:579–582

    CAS  Google Scholar 

  • Jinghua Y, Yongping C, Hesong L (1997) Effect of Zn++ on quality and lipid peroxidation in leaves of tea. J Anhui Agric Sci 25:30–32

    Google Scholar 

  • Kakkar RK, Nagar PK (1997) Distribution and changes in endogenous polyamines during winter dormancy in tea (Camellia sinensis (L.) O. Kuntze). J Plant Physiol 151:63–67

    CAS  Google Scholar 

  • Kaveh SH, Bernard F, Samiee K (2004) Growth stimulation and enhanced invertase activity induced by salicylic acid in tea cuttings (Camellia sinensis L.). Proceedings of the fourth international Iran and Russia conference, Shahr-e-Kord, Iran, pp 113–116

    Google Scholar 

  • Kefei Z, Ma Q, Zang H (1997) Effect of water deficit on physiological activities of paddy rice and upland rice seedlings. J Shandong Agr Univ 28:53–57

    Google Scholar 

  • Konishi S, Miyamoto S (1983) Alleviation of aluminum stress and stimulation of tea pollen tube growth by fluorine. Plant Cell Physiol 24:857–862

    CAS  Google Scholar 

  • Konishi S, Ferguson IB, Putterill J (1988) Effect of acidic polypeptides on aluminium toxicity in tube growth of pollen from tea (Camellia sinensis L.). J Plant Sci 56:55–59

    CAS  Google Scholar 

  • Kumar V, Yadav SK (2009) Proline and betaine provide protection to antioxidant and methylglyoxal detoxification systems during cold stress in Camellia sinensis (L.) O. Kuntze. Acta Physiol Plant 31:261–269

    CAS  Google Scholar 

  • Kume A, Tanaka C, Matsumoto S, Ino Y (1998) Physiological tolerance of Camellia rusticana leaves to heavy snowfall environments: The effects of prolonged snow cover on evergreen leaves. Ecological Res 13:117–124

    Google Scholar 

  • Lian CU, Wake YO, Yokota H, Wang G, Konishi S (1998) Effect of aluminum on callose synthesis in root tips of tea (Camellia sinensis L. ) plants. Soil Sci Plant Nut 44:695–700

    CAS  Google Scholar 

  • Li C, Xu H, Xu J, Chun X, Ni D (2011a) Effects of aluminium on ultrastructure and antioxidant activity in leaves of tea plant. Acta Physiol Plant 33:973–978

    CAS  Google Scholar 

  • Li C, Zheng Y, Zhou J, Xu J, Ni D (2011b) Changes of leaf antioxidant system, photosynthesis and ultrastructure in tea plant under the stress of fluorine. Biol Plant 55:563–566

    CAS  Google Scholar 

  • Li H, Zhou G, Zhang H, Song G, Liu J (2011c) Study on isolated pathogen of leaf blight and screening antagonistic bacteria from healthy leaves of Camellia oleifera. Afr J Agric Res 6:4560–4566

    Google Scholar 

  • Lin Z-H, Chen L-S, Chen R-B, Peng A (2009a) Effects of phosphorus deficiency on nutrient absorption of young tea bushes. J Tea Sci 29:295–200

    CAS  Google Scholar 

  • Lin Z-H, Chen L-S, Chen R-B, Zhang F-Z, Jiang H-X, Tang N (2009b) CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase, carbohydrates and photosynthetic electron transport probed by the JIP-test, of tea leaves in response to phosphorus supply. BMC Plant Biol 9:43–55

    Google Scholar 

  • Lin Z-H, Chen L-S, Chen R-B, Zhang F-Z, Jiang H-X, Tang N, Smith BR (2011) Root release and metabolism of organic acids in tea plants in response to phosphorus supply. J Plant Physiol 168:644–652

    CAS  PubMed  Google Scholar 

  • Lin Z-H, Chen L-S, Chen R-B, Zhang F-Z (2012) Antioxidant system of tea (Camellia sinensis) leaves in response to phosphorus supply. Acta Physiol Plant 34:2443–2448

    CAS  Google Scholar 

  • Luo YP, Wu S, Kang ML (2002) Photosynthetic characteristic and cold resistance of two-year old grafted tea plant in winter. J Zhejiang Univ Agric Life Sci 28:397–400

    Google Scholar 

  • Magambo MJS, Cannell MGR (1981) Dry matter production and partition in relation to yield of tea. Exp Agric 17:33–38

    Google Scholar 

  • Mamati GE, Liang YR, Lu JL (2006) Expression of basic genes involved in tea polyphenol synthesis in relation to accumulation of catechins and total tea polyphenols. J Sci Food Agric 86:459–464

    CAS  Google Scholar 

  • Matsumoto H, Hirasawa E, Morimura S, Takahashi E (1976) Localization of aluminum in tea leaves. Plant Cell Physiol 17:627–631

    CAS  Google Scholar 

  • Mokgalaka NS, McCrindle RI, Botha BM (2004) Multi-element analysis of tea leaves by inductively coupled plasma optical emission spectrometry using slurry nebulization. J Anal Atom Spectrom 19:1375–1378

    CAS  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2007) Cadmium induced oxidative stress influence on glutathione metabolic genes of Camellia sinensis (L.) O. Kuntze. Environ Toxicol 22:368–374

    CAS  PubMed  Google Scholar 

  • Mohotti AJ, Dennett MD, Lawlor DW (2000) Electron transport as a limitation to photosynthesis of tea (Camellia sinensis (L.) O. Kuntze): a comparison with sunflower (Helianthus annus L.) with special reference to irradiance. Trop Agric Res 12:1–10

    Google Scholar 

  • Mohotti AJ, Lawlor DW (2002) Diurnal variation of photosynthesis and photoinhibition in tea: effects of irradiance and nitrogen supply during growth in the field. J Exp Bot 53:313–322

    CAS  PubMed  Google Scholar 

  • Mondal TK (2003) Frost management of Tea. Assam Rev Tea New 92:8–12

    Google Scholar 

  • Mondal TK (2009) Tea In: Prydarsini M, Jain SM (Eds) Breeding plantation tree crops tropical species, pp 545–587

    Google Scholar 

  • Mondal TK, Bhattacharya A, Sood A, Ahuja PS (1998) Micropropagation of tea using thidiazuran. Plant Growth Regu 26:57–61

    CAS  Google Scholar 

  • Morita A, Fujii Y, Yokota H (2001) Effect of aluminium on exudation of organic acid anions in tea plants. In: Horst WJ et al. (ed) Plant nutrition-Food security and sustainability of agro-ecosystems. pp. 508–509

    Google Scholar 

  • Morita A, Horie H, Fujii Y, Takatsu S, Watanabe N, Yagi A, Yokota H (2004) Chemical forms of aluminum in xylem sap of tea plants (Camellia sinensis L.). Phytochem 65:2775–2780

    CAS  Google Scholar 

  • Morita A, Yanagisawa O, Takatsu S, Maeda S, Hiradate S (2008) Mechanism for the detoxification of aluminum in roots of tea plant (Camellia sinensis (L.) Kuntze). Phytochem 69:147–153

    CAS  Google Scholar 

  • Mukhopadhyay M, Bantawa P, Das A, Sarkar B, Bera B, Ghosh PD, Mondal TK (2012) Changes of growth, photosynthesis and alteration of leaf antioxidative defence system of tea (Camellia sinensis (L.) O. Kuntze) seedling under aluminum stress. Biometals 25:1141–1154

    Google Scholar 

  • Mukhopadhyay M, Ghosh PD, Mondal TK (2013a) Effect of boron deficiency on photosynthesis and antioxidant responses of young tea (Camellia sinensis (L.) O. Kuntze) plantlets. Russ J Plant Physiol 60:633–639

    CAS  Google Scholar 

  • Mukhopadhyay M, Das A, Subba P, Bantawa P, Sarkar B, Ghosh PD, Mondal TK (2013b) Structural, physiological and biochemical profiling of tea plantlets (Camellia sinensis (L.) O. Kuntze) under zinc stress. Biol Plant. doi:10.1007/s10535-012-0300–2

    Google Scholar 

  • Murugan AC, Thomas J, Rajagopal RK, Mandal AKA (2012) Metabolic responses of tea (Camellia sp.) to exogenous application of ascorbic acid. J Crop Sci Biotech 15:53–57

    Google Scholar 

  • Nagar PK (1996) Changes in en dog e nous abscisic acid and phenols during winter dormancy in tea (Camelliasinensis (L.) O. Kuntze). Acta Physiol Plant 18:33–38

    CAS  Google Scholar 

  • Nagar PK, Kumar A (2000) Changes in endogenous gibberellin activity during winter dormancy in tea (Camellia sinensis (L.) O. Kuntze). Acta Physiol Plant 22:439–443

    CAS  Google Scholar 

  • Nagar PK, Sood S (2006) Changes in endogenous auxins during winter dormancy in tea (Camellia sinensis L.) O. Kuntze. Acta Physiol Plant 28:165–169

    CAS  Google Scholar 

  • Nagarajah S (1979) The effect of potassium deficiency on stomatal and cuticular resistance in tea (Camellia sinensis). Physiol Plant 47:91–94

    CAS  Google Scholar 

  • Nagarajah S (1981) The effect of nitrogen on plant water relations in tea (Camellia sinensis). Physiol Plant 51:304–308

    CAS  Google Scholar 

  • Nagarajah S, Ratnasooriya GB (1977) Studies with antitranspirants on tea (Camellia sinensis L.). Plant Soil 48:185–197

    CAS  Google Scholar 

  • Nagata T, Hayatsu M, Kosuge N (1992) Identification of aluminum forms in tea leaves by 27Al NMR. Phytochem 31:1215–1218

    CAS  Google Scholar 

  • Nandi SK, Palni LMS (1993) Shoot growth and winter dormancy in tea. In: Nair MK (ed) PLACROSYM X 1992. J Plant Crop 21:328–333

    Google Scholar 

  • Napaporn SL, Orapin K, Natta L (2012) Chemical qualities and phenolic compounds of Assam tea after soil drench application of selenium and aluminium. Plant Soil 356:381–393

    Google Scholar 

  • Nelson S (2006) Zinc deficiency in tea (Camellia sinensis). Plant Dis PD34

    Google Scholar 

  • Netto LA, Jayaram KM, Haridas P, Puthur JT (2005) Characterization of photosynthetic events and associated changes in various clones of tea (Camellia sinensis L.) under low temperature conditions. J Plant Biol 48:326–331

    CAS  Google Scholar 

  • Ng’etich WK, Bore JK (2001) The effect of brassinolides (plant growth regulators) on yield and yield attributes of clonal tea (Camellia sinensis). Tea 22:8–12

    Google Scholar 

  • Ng’etich WK, Wachira FN (2003) Variations in leaf anatomy and gas exchange in tea clones with different ploidy. J Hort Sci Biotech 78:173–176

    Google Scholar 

  • Nikolaeva TN, Zagoskina NV, Zaprometov MN (2009) Production of phenolic compounds in callus cultures of tea plant under the effect of 2,4-D and NAA. Russ J Plant Physiol 56:45–49

    CAS  Google Scholar 

  • Owuor PO (2001) Effects of fertilizers on tea yields and quality: a review with special reference to Africa and Sri Lanka. Int J Tea Sci 1:1–11

    Google Scholar 

  • Premkumar R, Ponmurugan P, Manian S (2008) Growth and photosynthetic and biochemical responses of tea cultivars to blister blight infection. Photosynth 46:135–138

    CAS  Google Scholar 

  • Qian D, Chang-quan W, Bing L, Huan-xiu L, Yang L (2009) Effects of Se, Zn and their interaction on polyphenol oxidase activity of tea leaves in summer season. Acta Metall Sin 15:930–935

    Google Scholar 

  • Ramarethinam S, Rajalakshmi N (2004) Caffeine in tea plants (Camellia sinensis (L) O. Kuntze): in situ lowering by Bacillus licheniformis (Weigmann) Chester. Indian J Exp Biol 42:575–580

    CAS  PubMed  Google Scholar 

  • Rana NK, Mohanpuria P, Yadav SK (2008) Expression of tea cytosolic glutamine synthetase is tissue specific and induced by cadmium and salt stress. Biol Plant 52:361–364

    CAS  Google Scholar 

  • Ruan J, Wong MH (2001) Accumulation of fluoride and aluminum related to different varieties of tea plant. Environ Geochem Health 23:53–63

    CAS  Google Scholar 

  • Ruan JY, Wu X, Hardter R (1999) Effect of potassium and magnesium nutrition on the quality components of different types of tea. J Sci Food Agric 79:47–52

    CAS  Google Scholar 

  • Ruan J, Ma L, Shi Y, Han W (2003) Uptake of fluoride by tea plant (Camellia sinensis L) and the impact of aluminium. J Sci Food Agric 83:1342–1348

    CAS  Google Scholar 

  • Ruan J, Ma L, Shi Y, Han W (2004) The impact of pH and calcium on the uptake of fluoride by tea plants (Camellia sinensis L.). Ann Bot 93:97–105

    CAS  PubMed  Google Scholar 

  • Ruan J, Ma L, Shi Y (2006) Aluminium in tea plantations: mobility in soils and plants, and the influence of nitrogen fertilization. Environ Geochem Health 28:519–528

    CAS  PubMed  Google Scholar 

  • Ruan J, Gerendás J, Härdter R, Sattlemacher B (2007) Effect of nitrogen form and root-zone pH on growth and nitrogen uptake of tea (Camellia sinensis) plants. Ann Bot 99:301–310

    CAS  PubMed  Google Scholar 

  • Ruan J, Ma L, Yang Y (2012) Magnesium nutrition on accumulation and transport of amino acids in tea plants. J Sci Food Agric 92:1375–1383

    CAS  PubMed  Google Scholar 

  • Saha D, Mandal S, Saha A (2012) Copper induced oxidative stress in tea (Camellia sinensis) leaves. J Environ Biol 33:861–866

    PubMed  Google Scholar 

  • Saijo R (1980) Effect of shade treatment on biosynthesis of catechins in tea plants. Plant Cell Physiol 21:989–998

    CAS  Google Scholar 

  • Saikia JK, Baruah U, Barman TS, Saikia H, Bandyopadhyay T (2011) Impact of tea mosquito infestation on endogenous hormones of tea (Camellia sinensis L.). Sci Cult 77:412–415

    Google Scholar 

  • Salehi SY, Hajiboland RA (2008) A high internal phosphorus use efficiency in tea (Camellia sinensis L.) plants. Asian J Plant Sci 7:30–36

    CAS  Google Scholar 

  • Sandanam S, Gee GW, Mapa RB (1981) Leaf water diffusion resistance in clonal tea (Camellia sinensis L.): Effects of water stress, leaf age and clones. Ann Bot 47:339–349

    Google Scholar 

  • Sanderson GW, Sivapalan K (1966) Translocation of photosynthetically assimilated carbon in tea plants. Tea Quart 37:140–153

    CAS  Google Scholar 

  • Sanjay R, Baby UI (2007) Physiological and biochemical changes in tea leaves due to Pestalotiopsis infection. J Plant Crop 35:15–18

    Google Scholar 

  • Sharma P, Pandey S, Bhattacharya A, Nagar PK, Ahuja PS (2004) ABA associated biochemical changes during somatic embryo development in Camellia sinensis (L.) O. Kuntze. J Plant Physiol 161:1269–1276

    CAS  PubMed  Google Scholar 

  • Sharma V, Joshi R, Gulati A (2011) Seasonal clonal variations and effects of stresses on quality chemicals and prephenate dehydratase enzyme activity in tea (Camellia sinensis). Eur Food Res Technol 232:307–317

    CAS  Google Scholar 

  • Shi Y, Ruan J, Ma L, Han W, Wang F (2008) Accumulation and distribution of arsenic and cadmium by tea plants. J Zhejiang Univ Sci B 9:265–270

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shu W, Zhang ZQ, Lan CY, Wong MH (2003) Fluoride and aluminium concentrations of tea plants and tea products from Sichuan Province, PR China. Chemosph 52:1475–1482

    CAS  Google Scholar 

  • Singh S, Pandey A, Kumar B, Palni LMS (2010) Enhancement in growth and quality parameters of tea [Camellia sinensis (L.) O. Kuntze] through inoculation with arbuscular mycorrhizal fungi in an acid soil. Biol Fert Soils 46:427–433

    Google Scholar 

  • Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58

    CAS  Google Scholar 

  • Smith BG, Stephens W, Burgess PJ, Carr MKV (1993) Effects of light, temperature, irrigation and fertilizer on photosynthetic rate in tea (Camellia sinensis). Exp Agric 29:291–306

    Google Scholar 

  • Smith BG, Burgess PJ, Carr MKV (1994) Effects of clone and irrigation on the stomatal conductance and photosynthetic rate of tea (Camellia sinensis). Exp Agric 30:1–16

    Google Scholar 

  • Stapleton AE (1992) Ultraviolet radiation and plants: Burning questions. Plant Cell 4:1352–1358

    Google Scholar 

  • Tan X, Yuan J, Li Z, Ye S, Jiang Z (2011) Effects of aluminum and phosphate on material distribution and roots characteristics and activity of Camellia oleifera seedlings. J Central South Univ Forestry Tech 20:11–12

    Google Scholar 

  • Tang J, Xu J, Wu Y, Li Y, Tang Q (2012) Effects of high concentration of chromium stress on physiological and biochemical characters and accumulation of chromium in tea plant (Camellia sinensis L.). Afr J Biotechnol 11:2248–2255

    CAS  Google Scholar 

  • Tang Q, Li X, Zhu X, Huang Y, Yang H (2008a) Effects of plumbum and chromium stress on the growth of tea plants. Southwest J Agri Sci 21:156–162

    Google Scholar 

  • Tang Q, Zhu X, Li X, Tan H (2008b) Effects of As and Cd stress on the growth of tea plants. J Henan Agric Sci 208–211

    Google Scholar 

  • Tanton TW (1979) Some factors limiting yields of tea (Camellia sinensis). Exp Agric 15:187–192

    Google Scholar 

  • Thomas J, Ajay D, Raj Kumar R, Mandal AKA (2010) Influence of beneficial microorganisms during in vivo acclimatization of in vitro-derived tea (Camellia sinensis) plants. Plant Cell Tiss Organ Cult 101:365–370

    Google Scholar 

  • Tolrà R, Vogel-MikuÅ¡, Hajiboland R, Kump P, Pongrac P, Kaulich B, Gianoncelli A, Babin V, Barceló J, Regvar M, Poschenrieder C (2011) Localization of aluminium in tea (Camellia sinensis) leaves using low energy X-ray fluorescence spectro-microscopy. J Plant Res 124:165–172

    PubMed  Google Scholar 

  • Upadhyaya H, Panda SK (2004) Responses of Camellia sinensis to drought and rehydration. Biol Plant 48:597–600

    Google Scholar 

  • Upadhyaya H, Panda SK, Dutta BK (2008) Variation of physiological and antioxidative responses in tea cultivars subjected to elevated water stress followed by rehydration recovery. Acta Physiol Plant 30:457–468

    CAS  Google Scholar 

  • Upadhyaya H, Panda SK, Dutta BK (2011) CaCl2 improves post-drought recovery potential in Camellia sinensis (L) O. Kuntze. Plant Cell Rep 30:495–503

    CAS  PubMed  Google Scholar 

  • Upadhyaya H, Dutta BK, Sahoo L, Panda SK (2012) Comparative effect of Ca, K, Mn and B on post-drought stress recovery in tea [Camellia sinensis (L.) O Kuntze]. Am J Plant Sci 3:443–460

    CAS  Google Scholar 

  • Upadhyaya H, Dutta BK, Panda SK (2013) Zinc modulates drought induced biochemical damages in tea (Camellia sinensis (L) O Kuntze). J Agric Food Chem 61:6660–6670

    CAS  PubMed  Google Scholar 

  • Venkatesan S, Hemalatha KV, Jayaganesh S (2006) Zn toxicity and its influence on nutrient uptake in tea. Amer J Plant Physiol 1:185–192

    Google Scholar 

  • Venkatesan S, Jayaganesh S (2010) Characterization of magnesium toxicity, its influence on amino acid synthesis pathway and biochemical parameters of tea. Res J Phytochem 4:66–67

    Google Scholar 

  • Vyas D, Kumar S (2005a) Purification and partial characterization of a low temperature responsive Mn-SOD from tea (Camellia sinensis (L.) O. Kuntze). Biochem Biophys Res Comm 329(:):831–838

    CAS  Google Scholar 

  • Vyas D, Kumar S (2005b) Tea (Camellia sinensis (L.) O. Kuntze) clone with lower period of winter dormancy exhibits lesser cellular damage in response to low temperature. Plant Physiol Biochem 43:383–388

    CAS  Google Scholar 

  • Vyas D, Kumar S, Ahuja PS (2007) Tea (Camellia sinensis) clones with shorter periods of winter dormancy exhibit lower accumulation of reactive oxygen species. Tree Physiol 27:1253–1259

    CAS  PubMed  Google Scholar 

  • Waheed A, Hamid FS, Shah AH, Ahmad H, Khalid A, Abbasi FM, Ahmad N, Aslam S, Sarwar S (2012) Response of different tea (Camellia sinensis L.) clones against drought stress. J Master Environ Sci 3:395–410

    Google Scholar 

  • Wan Q, Xu RK, Li XH (2012) Proton release by tea plant (Camellia sinensis L.) rootsas affected by nutrient solution concentration and pH. Plant Soil Environ 58:429–434

    CAS  Google Scholar 

  • Wang X, Liu P, Luo H, Xie Z, Xu G, Yao J, Chen K (2009a) Effect of Al and F interaction on physiological characteristics of tea plants. Acta Hort Sin 7:207–209

    Google Scholar 

  • Wang R, Chen Y, Wang X, Peng S, Yang X, Wang Y, Yang Y (2009b) Influencing factors on photosynthetic characteristic of superior clones of Camellia oleifera-leaf age and leaf position. Chinese Agric Sci Bull 2:209–217

    Google Scholar 

  • Wang LY, Wei k, Jiang YW, Cheng H, Zhou J, He W, Zhang CC (2011) Seasonal climate effects on flavanols and purine alkaloids of tea (Camellia sinensis L.). European Food Res Technol 233:1049–1055

    CAS  Google Scholar 

  • Wang G, Chen L, Kou L, Yang Y, Feng F, Cao F, Fang Y (2012) Effects of high temperature stress on osmotic adjustment substances of 25 varieties of Camellia oleifera. J Henan Agric Sci 2012–04

    Google Scholar 

  • Wijeratne MA, Formham R, Anandacoomaraswamy A (1998) Water relations of clonal tea (Camellia sinensis L.) with reference to drought resistance: II. Effect of water stress. Tropical Agric Res Ext 1:74–80

    Google Scholar 

  • Wong MH, Zhang ZQ, Wong JWC, Lan CY (1998) Trace metal contents (Al, Cu and Zn) of tea: Tea and soil from two tea plantations, and tea products from different provinces of China. Environ Geochem Health 20:87–94

    Google Scholar 

  • Wu C, Fang X (1994) Effect of zinc on carbon and nitrogen metabolism in tea plant (Camellia sinensis L.). Sci Agric Sinica 27:72–77

    CAS  Google Scholar 

  • Wu B, Pan G (1995) Studies on physiological and biochemical response to water stress in tea plant. J Zhejiang Agric Univ 4:1995–2005

    Google Scholar 

  • Wu Y, Liang Q, Tang Q (2011) Effect of Pb on growth, accumulation and quality component of tea plant. Procedia Eng 18:214–219

    CAS  Google Scholar 

  • Xia J, Lan H (2008) Effects of cadmium stress on growth of tea plant and physiological index in leaves of mengshan tea. J Tea Sci 3:205–207

    Google Scholar 

  • Xu J, Yang F, Chen L, Hu Y, Hu Q (2003) Effect of selenium on increasing the antioxidant activity of tea leaves harvested during the early spring tea producing season. J Agric Food Chem 51:1081–1094

    CAS  PubMed  Google Scholar 

  • Yadav SK, Mohanpuria P (2009) Responses of Camellia sinensis cultivars to Cu and Al stress. Biol Plant 53:737–740

    CAS  Google Scholar 

  • Yang Y, Zhuang X, Hu H (1987) Effect of the soil water content on the physiological process of tea plant. J Tea Sci. doi:cnki:ISSN:1000-369X.0.1987-01-006

    Google Scholar 

  • Yang Z, Kobayashi E, Katsuno T, Asanuma T, Fujimori T, Ishikawa T, Tomomura M, Mochizuki K, Watase T, Nakamura Y, Watanabe N (2012) Characterisation of volatile and non-volatile metabolites in etiolated leaves of tea (Camellia sinensis) plants in the dark. Food Chem 135:2268–2276

    CAS  PubMed  Google Scholar 

  • Yu C, Pan Z, Chen J, Fan D, Wang X (2012) Effects of Al3+ on growth and physiological characteristics of tea plant (Camellia sinensis). Plant Nutr Fert Sci 2012–2021

    Google Scholar 

  • Zagoskina NV, Dubravina GA, Alyavina AK, Goncharuk EA (2003) Effect of ultraviolet (UV-B) radiation on the formation and localization of phenolic compounds in tea plants callus cultures. Russ J Plant Physiol 50:270–275

    CAS  Google Scholar 

  • Zagoskina NV, Alyavina AK, Gladyshko TO, Lapshin PV, Egorova EA, Bukhov NG (2005) Ultraviolet rays promote development of photosystem II photochemical activity and accumulation of phenolic compounds in the tea callus culture (Camellia sinensis). Russ J Plant Physiol 52:731–739

    CAS  Google Scholar 

  • Zagoskina NV, Goncharuk EA, Alyavina AK (2007) Effect of cadmium on the phenolic compounds formation in the callus cultures derived from various organs of the tea plant. Russ J Plant Physiol 54:237–243

    CAS  Google Scholar 

  • Zheng XQ, Jin J, Chen H, Du YY, Ye JH, Lu JL, Lin C, Dong JJ, Sun QL, Wu LY, Liang YR (2008) Effect of ultraviolet B irradiation on accumulation of catechins in tea (Camellia sinensis (L) O. Kuntze). Afr J Biotech 7:3283–3287

    CAS  Google Scholar 

  • Zeng QL, Chen RF, Zhao XQ, Wang HY, Shen RF (2011) Aluminium uptake and accumulation in the hyperaccumulator Camellia Oleifera Abel. Pedosphere 21:358–364

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapan Kumar Mondal .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this chapter

Cite this chapter

Mondal, T. (2014). Stress Physiology. In: Breeding and Biotechnology of Tea and its Wild Species. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1704-6_7

Download citation

Publish with us

Policies and ethics