Skip to main content

Androgen Receptor Expression in Human Thyroid Cancer Tissues: A Potential Mechanism Underlying the Gender Bias in the Incidence of Thyroid Cancers

  • Conference paper
  • First Online:
Book cover Perspectives in Cancer Prevention-Translational Cancer Research

Abstract

Sex difference in the incidence of thyroid cancer with predominance of the disease in women is well known, whereas the underlying mechanism remains obscure. Research performed during the last four decades points out that sex steroids may underlie this bias in thyroid cancer incidence. This review attempts to compile the available information in the area. The authors have taken care to include all relevant publications. If any of the important reports is not included, it is inadvertent and not intentional. A series of reports from our laboratory have established that testosterone stimulates the proliferation and growth of normal thyroid gland in rats of either sex, whereas estradiol has a specific stimulatory effect in females and an inhibitory effect in males. Early experimental studies in rats revealed that sex steroids may promote thyroid tumorigenesis;we have shown that testosterone may specifically promote malignancy. We have also shown the stimulatory effect of testosterone and estradiol in human thyroid cancer cell lines NPA-87-1 and WRO-82-1. In a recent paper we reported a positive correlation between AR ligand-binding activity and its protein expression level; AR mRNA expression had a positive correlation with its transcription factors Sp1 and a negative correlation with p53, its repressor in papillary thyroid carcinoma (PTC) or follicular adenoma (FTA) tissues of women. There was inconsistency between expression levels of AR mRNA and its protein, which was influenced by the expression level of the microRNA (miR)-124a. From our in vitro experiments using a human PTC cell line (NPA-87-1) transfected with either miR-124a or anti-miR-124a in the light of our findings from human thyroid tumor tissues, we have shown for the first time that miR-124a is a potent inhibitor of AR expression, and its expression pattern may determine the mitogenic effect of testosterone on thyroid cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarnisalo P, Palvimo JJ, Janne OA (1998) CREB-binding protein in androgen receptor-mediated signaling. Proc Natl Acad Sci USA 95:2122

    Article  PubMed  CAS  Google Scholar 

  • Abraham D, Jackson N, Gundara JS, Zhao J, Gill AJ et al (2011) MicroRNA profiling of sporadic and hereditary medullary thyroid cancer identifies predictors of nodal metastasis, prognosis, and potential therapeutic targets. Clint Cancer Res 17:4772–4781

    Article  CAS  Google Scholar 

  • ACS (2012) Cancer facts and figures. American Cancer Society, Atlanta, pp 1–66

    Google Scholar 

  • Alimirah F, Panchanathany R, Cheny J, Zhang X, Ho S, Choubey D (2007) Expression of androgen receptor is negatively regulated by p53. Neoplasia 9:1152–1159

    Article  PubMed  CAS  Google Scholar 

  • Annapoorna K (2012) Mitogenic effect of estradiol on human papillary thyroid carcinoma is mediated through MAPK signaling downstream of estrogen receptor alpha. PhD thesis, University of Madras, India

    Google Scholar 

  • Annapoorna K, Stanley J, Neelamohan R, Aruldhas MM (2011) Estradiol-induced proliferation of human papillary thyroid cancer by activating Mitogen-activated protein kinase (MAPK) signaling is mediated through its specific receptor subtype. In: AACR International conference on New Horizons in Cancer Research: Biology to Prevention to Therapy, December 13–16, 2011. The Leela Kempinski Gurgaon, Gurgaon, Delhi (NCR), India. Poster No. B29

    Google Scholar 

  • Arora R, Dias A (2006) Iodine and Thyroid Cancer in Goa. J Health Allied Sci 5:1–3

    Google Scholar 

  • Aruldhas MM, Thiruvengadam A, Banu SK, Govindarajulu P (1995) Thyroidal concentration of testosterone and estradiol determines the promotion of thyroid tumours in N-nitrosodiisopropanolamine (DHPN) treated Wistar rats. In: 12th Asia Pacific Cancer Conference: towards total cancer control, Singapore, p 43

    Google Scholar 

  • Bahrami Z, Hedayati M, Taghikhani M, Azizi F (2009) Effect of testosterone on thyroid weight and function in iodine deficient castrated rats. Horm Metab Res 41:762–766

    Article  PubMed  CAS  Google Scholar 

  • Banu KS, Aruldhas MM (2002) Sex steroids regulate TSH-induced thyroid growth during sexual maturation in Wistar rats. Exp Clint Endocrinol Diabetes 110:37–42

    Article  Google Scholar 

  • Banu SK, Arosh JA, Govindarajulu P, Aruldhas MM (2001a) Testosterone and estradiol differentially regulate thyroid growth in Wistar rats from immature to adult age. Endocr Res 27:447–463

    Article  PubMed  CAS  Google Scholar 

  • Banu SK, Govindarajulu P, Aruldhas MM (2001b) Testosterone and estradiol have specific differential modulatory effect on the proliferation of human thyroid papillary and follicular carcinoma cell lines independent of TSH action. Endocr Pathol 12:315–327

    Article  PubMed  CAS  Google Scholar 

  • Banu SK, Govindarajulu P, Aruldhas MM (2002) Testosterone and estradiol up-regulate androgen and estrogen receptors in immature and adult rat thyroid glands in vivo. Steroids 67:1007–1014

    Article  PubMed  CAS  Google Scholar 

  • Beklemisheva AA, Feng J, Yeh YA, Wang LG, Chiao JW (2007) Modulating testosterone stimulated prostate growth by phenethyl isothiocyanate via Sp1 and androgen receptor down-regulation. Prostate 67:863–870

    Article  PubMed  CAS  Google Scholar 

  • Bléchet C, Lecomte P, De Calan L, Beutter P, Guyétant S (2007) Expression of sex steroid hormone receptors in C cell hyperplasia and medullary thyroid carcinoma. Virchows Arch 450:433–439

    Article  PubMed  Google Scholar 

  • Brinkmann AO (2011) Molecular mechanisms of androgen action – a historical perspective. Methods Mol Biol 776:3–24

    Article  PubMed  CAS  Google Scholar 

  • Chen AY, Jemal A, Ward EM (2009) Increasing incidence of differentiated thyroid cancer in the United States, 1988–2005. Cancer 115:3801–3807

    Article  PubMed  Google Scholar 

  • Colonna M, Bossard N, Guizard AV, Remontet L, Grosclaude P (2010) Descriptive epidemiology of thyroid cancer in France: incidence, mortality and survival. Ann Endocrinol (Paris) 71:95–101

    Article  CAS  Google Scholar 

  • Cook MB, Dawsey SM, Freedman ND, Inskip PD, Wichner SM et al (2009) Sex disparities in cancer incidence by period and age. Cancer Epidemiol Biomarkers Prev 18:1174–1182

    Article  PubMed  Google Scholar 

  • Cooke PS, Young P, Cunha GR (1991) Androgen receptor expression in developing male reproductive organs. Endocrinology 128:2867–2873

    Article  PubMed  CAS  Google Scholar 

  • Cronauer MV, Schulz WA, Burchardt T, Ackermann R, Burchardt M (2004) Inhibition of p53 function diminishes androgen receptor-mediated signaling in prostate cancer cell lines. Oncogene 23:3541–3549

    Article  PubMed  CAS  Google Scholar 

  • Dean DS, Hay ID (2000) Prognostic indicators in differentiated thyroid carcinoma. Cancer Control 7:229–239

    PubMed  CAS  Google Scholar 

  • Demidchik YE, Saenko VA, Yamashita S (2007) Childhood thyroid cancer in Belarus, Russia, and Ukraine after Chernobyl and at present. Arq Bras Endocrinol Metabol 51:748–762

    Article  PubMed  Google Scholar 

  • Dorairajan N, Pandiarajan R, Yuvaraja S (2002) A descriptive study of papillary thyroid carcinoma in a teaching hospital in Chennai, India. Asian J Surge 25:300–303

    Article  CAS  Google Scholar 

  • Duntas LH, Doumas C (2009) The “rings of fire” and thyroid cancer. Hormones 8:249–253

    PubMed  Google Scholar 

  • Farahati J, Parlowsky T, Mader U, Reiners C, Bucsky P (1998) Differentiated thyroid cancer in children and adolescents. Langenbecks Arch Surge 383:235–239

    Article  CAS  Google Scholar 

  • Flamant F, Baxter JD, Forrest D, Refetoff S, Samuels H et al (2006) International Union of Pharmacology. LIX. The pharmacology and classification of the nuclear receptor superfamily: thyroid hormone receptors. Pharmacol Rev 58:705–711

    Article  PubMed  CAS  Google Scholar 

  • Franceschi S (1998) Iodine intake and thyroid carcinoma – a potential risk factor. Exp Clint Endocrinol Diabetes 106(Suppl 3):S38–S44

    Article  CAS  Google Scholar 

  • Franker DL (1995) Radiation exposure and other factors that predispose to human thyroid neoclassic. Surge Clint North Am 75:365–375

    Google Scholar 

  • Ha T (2011) Micro RNAs in human diseases: from cancer to cardiovascular disease. Immune Netw 11:135–154

    Article  PubMed  Google Scholar 

  • Hedinger C, Williams ED, Sobin LH (1989) The WHO histological classification of thyroid tumors: a commentary on the second edition. Cancer 63:908–911

    Article  PubMed  CAS  Google Scholar 

  • Heinlein CA, Chang C (2002) Androgen receptor (AR) coregulators: an overview. Endocri Rev 23:175–200

    Article  CAS  Google Scholar 

  • Holzer S, Reiners C, Mann K, Bamberg M, Rothmund M et al (2000) Patterns of care for patients with primary differentiated carcinoma of the thyroid gland treated in Germany during 1996. U.S. and German Thyroid Cancer Group. Cancer 89:192–201

    Article  PubMed  CAS  Google Scholar 

  • Howlader N, Noone AM, Krapcho M, Neyman N, Aminou R, Waldron W, Altekruse SF, Kosary CL, Ruhl J, Tatalovich Z, Cho H, Mariotto A, Eisner MP, Lewis DR, Chen HS, Feuer EJ, Cronin KA, Edwards BK (2011) SEER Cancer Statistics Review, 1975–2008, National Cancer Institute. Bethesda. http://seer.cancer.gov/csr/1975_2008

  • Kesminiene A, Evrard AS, Ivanov VK, Malakhova IV, Kurtinaitise J et al (2012) Risk of thyroid cancer among Chernobyl liquidators. Radiat Res 178:425–436

    Article  PubMed  CAS  Google Scholar 

  • Kimura N, Mizokami A, Oonuma T, Sasano H, Nagura H (1993) Immunocytochemical localization of androgen receptor with polyclonal antibody in paraffin-embedded human tissues. J Histochem Cytochem 41:671–678

    Google Scholar 

  • Landis SH, Murray T, Bolden S, Wingo PA (1998) Cancer statistics. CA Cancer J Clin 48:6–29

    Article  PubMed  CAS  Google Scholar 

  • Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425:415–419

    Article  PubMed  CAS  Google Scholar 

  • Lee HJ, Chang C (2003) Recent advances in androgen receptor action. Cell Mol Life Sci 60:1613–1622

    Article  PubMed  CAS  Google Scholar 

  • Leonardi GC, Candido S, Carbone M, Colaianni V, Garozzo SF et al (2012) MicroRNAs and thyroid cancer: biological and clinical significance (Review). Int J Mol Med 30:991–999

    PubMed  CAS  Google Scholar 

  • LiVolsi VA (1996) Well differentiated thyroid carcinoma. Clin Oncol (R Coll Radiol) 8:281–288

    Article  CAS  Google Scholar 

  • Lukas J, Drabek J, Lukas D, Dusek L, Gatek J (2012) The epidemiology of thyroid cancer in the Czech Republic in comparison with other countries. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2012 Nov 2. doi: 10.5507/bp.2012.086. [Epub ahead of print]

  • Mack WJ, Preston-Martin S, Bernstein L, Qian D, Xiang M (1999) Reproductive and hormonal risk factors for thyroid cancer in Los Angeles County females. Cancer Epidemiol Biomarkers Prev 8:991–997

    PubMed  CAS  Google Scholar 

  • Magri F, Capelli V, Rotondi M, Leporati P, La Manna L et al (2012) Expression of estrogen and androgen receptors in differentiated thyroid cancer: an additional criterion to assess the patient’s risk. Endocr Relat Cancer 19:463–471

    Article  PubMed  CAS  Google Scholar 

  • Marini F, Luzi E, Brandi ML (2011) MicroRNA role in thyroid cancer development. J Thyroid Res 2011:12 p. Article ID 407123. doi:10.4061/2011/407123

  • Marugo M, Torre G, Bernasconi D, Fazzuoli L, Cassulo S et al (1991) Androgen receptors in normal and pathological thyroids. J Endocrinol Invest 14:31–35

    PubMed  CAS  Google Scholar 

  • Matsumoto T, Sakari M, Okada M, Yokoyama A, Takahashi S et al (2013) The androgen receptor in health and disease. Annu Rev Physiol 75:201–224

    Article  PubMed  CAS  Google Scholar 

  • Mazonakis M, Kourinou K, Lyraraki E, Varveris H, Damilakis J (2012) Thyroid exposure to scattered radiation and associated second cancer risk from paediatric radiotherapy for extracranial tumours. Radiat Prot Dosimetry 152:317–322

    Google Scholar 

  • Memon A, Berrington De Gonzalez A, Luqmani Y, Suresh A (2004) Family history of benign thyroid disease and cancer and risk of thyroid cancer. Eur J Cancer 40:754–760

    Article  PubMed  CAS  Google Scholar 

  • Miki H, Oshimo K, Inoue H, Morimoto T, Monden Y (1990) Sex hormone receptors in human thyroid tissues. Cancer 66:1759–1762

    Article  PubMed  CAS  Google Scholar 

  • Mishra A, Agrawal V, Krishnani N, Mishra SK (2009) Prevalence of RET/PTC expression in papillary thyroid carcinoma and its correlation with prognostic factors in a north Indian population. J Postgrad Med 55:171–175

    Article  PubMed  CAS  Google Scholar 

  • Mizokami A, Yeh SY, Chang C (1994) Identification of 3′,5′-cyclic adenosine monophosphate response element and other cis-acting elements in the human androgen receptor gene promoter. Mol Endocrinol 8:77–88

    Article  PubMed  CAS  Google Scholar 

  • Nandakumar A, Gupta PC, Gangadharan P, Visweswara RN, Parkin DM (2005) Geographic pathology revisited: development of an atlas of cancer in India. Int J Cancer 116:740–754

    Article  PubMed  CAS  Google Scholar 

  • Negri E, Ron E, Franceschi S, Dal Maso L, Mark SD et al (1999) A pooled analysis of case–control studies of thyroid cancer. I. Methods. Cancer Causes Control 10:131–142

    Article  PubMed  CAS  Google Scholar 

  • Olsen PH, Ambros V (1999) The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol 216:671–680

    Article  PubMed  CAS  Google Scholar 

  • Pacini F, Vorontsova T, Demidchik EP, Molinaro E, Agate L et al (1997) Post-Chernobyl thyroid carcinoma in Belarus children and adolescents: comparison with naturally occurring thyroid carcinoma in Italy and France. J Clint Endocrinol Metab 82:3563–3569

    Article  CAS  Google Scholar 

  • Pal T, Hamel N, Vesprini D, Sanders K, Mitchell M et al (2001) Double primary cancers of the breast and thyroid in women: molecular analysis and genetic implications. Fam Cancer 1:17–24

    Article  PubMed  CAS  Google Scholar 

  • Petre-Draviam CE, Cook CL, Burd CJ, Marshall TW, Wetherill YB, Knudsen KE (2003) Specificity of cyclin D1 for androgen receptor regulation. Cancer Res 63:4903–4913

    PubMed  CAS  Google Scholar 

  • Pisanu A, Reccia I, Nardello O, Uccheddu A (2009) Risk factors for nodal metastasis and recurrence among patients with papillary thyroid microcarcinoma: differences in clinical relevance between nonincidental and incidental tumors. World J Surg 33:460–468

    Article  PubMed  Google Scholar 

  • Pottern LM, Stone BJ, Day NE, Pickle LW, Fraumeni JF Jr (1980) Thyroid cancer in Connecticut, 1935–1975: an analysis by cell type. Am J Epidemiol 112:764–774

    PubMed  CAS  Google Scholar 

  • Preston-Martin S, Bernstein L, Pike MC, Maldonado AA, Henderson BE (1987) Thyroid cancer among young women related to prior thyroid disease and pregnancy history. Br J Cancer 55:191–195

    Article  PubMed  CAS  Google Scholar 

  • Prinz RA, Sandberg L, Chaudhari PK (1984) Androgen receptors in human thyroid tissue. Surgery 96:996–1000

    PubMed  CAS  Google Scholar 

  • Rahbari R, Zhang L, Kebebew E (2010) Thyroid cancer gender disparity. Future Once 11:1771–1779

    Article  Google Scholar 

  • Rao DN (1999) Epidemiological observations of thyroid cancer. In: Shah AH, Samuel AM, Rao RS (eds) Thyroid cancer – an Indian perspective. Quest Publications, Mumbai, pp 3–16

    Google Scholar 

  • Reiners C (2009) Radioactivity and thyroid cancer. Hormones (Athens) 8:185–191

    Google Scholar 

  • Reynolds RM, Weir J, Stockton DL, Brewster DH, Sandeep TC et al (2005) Changing trends in incidence and mortality of thyroid cancer in Scotland. Clint Endocrinol (Oxf) 62:156–162

    Article  Google Scholar 

  • Ricarte-Filho JC, Fuziwara CS, Yamashita AS, Rezende E, da-Silva MJ et al (2009) Effects of let-7 microRNA on cell growth and differentiation of papillary thyroid cancer. Transl Once 2:236–241

    Google Scholar 

  • Ron E, Doody MM, Becker DV, Brill AB, Curtis RE et al (1998) Cancer mortality following treatment for adult hyperthyroidism. Cooperative Thyrotoxicosis Therapy Follow-up Study Group. JAMA 280:347–355

    Article  PubMed  CAS  Google Scholar 

  • Rossi R, Zatelli MC, Franceschetti P, Maestri I, Magri E et al (1996) Inhibitory effect of dihydrotestosterone on human thyroid cell growth. J Endocrinol 151:185–194

    Article  PubMed  CAS  Google Scholar 

  • Ruizeveld de Winter JA, Trapman J, Vermey M, Mulder E, Zegers ND, van der Kwast TH (1991) Androgen receptor expression in human tissues: an immunohistochemical study. J Histochem Cytochem 39:927–936

    Article  PubMed  CAS  Google Scholar 

  • Saunders PTK, Critchley HOD (2002) Estrogen receptor subtypes in the female reproductive tract. Reprod Med 10:149–164

    CAS  Google Scholar 

  • Schonfeld SJ, Ron E, Kitahara CM, Brenner A, Park Y, et al (2011) Hormonal and reproductive factors and risk of postmenopausal thyroid cancer in the NIH-AARP Diet and Health Study. Cancer Epidemiol 35:e85--e90

    Google Scholar 

  • Stanley JA, Aruldhas MM, Yuvaraju PB, Banu SK, Anbalagan J et al (2010) Is gender difference in postnatal thyroid growth associated with specific expression patterns of androgen and estrogen receptors? Steroids 75:1058–1066

    Article  PubMed  CAS  Google Scholar 

  • Stanley JA, Aruldhas MM, Chandrasekaran M, Neelamohan R, Suthagar E et al (2012) Androgen receptor expression in human thyroid cancer tissues: a potential mechanism underlying the gender bias in the incidence of thyroid cancers. J Steroid Biochem Mol Biol 130:105–124

    Article  PubMed  CAS  Google Scholar 

  • Stiller CA (2005) Thyroid cancer in Belarus. Int J Epidemiol 34:714

    Article  PubMed  Google Scholar 

  • Tahboub R, Arafah BM (2009) Sex steroids and the thyroid. Best Pract Res Clin Endocrinol Metab 23:769–780

    Article  PubMed  CAS  Google Scholar 

  • Takane KK, McPhaul MJ (1996) Functional analysis of the human androgen receptor promoter. Mol Cell Endocrinol 119:83–93

    Article  PubMed  CAS  Google Scholar 

  • Thakur MK, Paramanik V (2009) Role of steroid hormone coregulators in health and disease. Hor Res 71:194–200

    Article  CAS  Google Scholar 

  • Thiruvengadam A, Govindarajulu P, Aruldhas MM (2003) Modulatory effect of estradiol and testosterone on the development of N-nitrosodiisopropanolamine induced thyroid tumors in female rats. Endocr Res 29:43–51

    Article  PubMed  CAS  Google Scholar 

  • Tronko M, Mabuchi K, Bogdanova T, Hatch M, Likhtarev I et al (2012) Thyroid cancer in Ukraine after the Chernobyl accident (in the framework of the Ukraine-US Thyroid Project). J Radiol Prot 32:N65–N69

    Article  PubMed  Google Scholar 

  • Unnikrishnan A, Menon U (2011) Thyroid disorders in India: an epidemiological perspective. Indian J Endocr Metab 15:S78–S81

    Article  Google Scholar 

  • Veiga LH, Lubin JH, Anderson H, de Vathaire F, Tucker M et al (2012) A pooled analysis of thyroid cancer incidence following radiotherapy for childhood cancer. Radiat Res 178:365–376

    Article  PubMed  CAS  Google Scholar 

  • Volante M, Rapa I, Gandhi M, Bussolati G, Giachino D, Papotti M, Nikiforov YE (2009) RAS mutations are the predominant molecular alteration in poorly differentiated thyroid carcinomas and bear prognostic impact. J Clint Endocrinol Metab 94:4735–4741

    Article  CAS  Google Scholar 

  • Vriens MR, Weng J, Suh I, Huynh N, Guerrero MA et al (2012) MicroRNA expression profiling is a potential diagnostic tool for thyroid cancer. Cancer 118:3426–3432

    Article  PubMed  CAS  Google Scholar 

  • Ward EM, Jemal A, Chen A (2010) Increasing incidence of thyroid cancer: is diagnostic scrutiny the sole explanation? Future Once 6:185–188

    Article  Google Scholar 

  • Wartofsky L (2010) Increasing world incidence of thyroid cancer: Increased detection or higher radiation exposure? Hormones 9:103–108

    PubMed  Google Scholar 

  • Yao R, Chiu G, Strugnell SS, Gill S, Wiseman SM (2011) Gender differences in thyroid cancer. Expert Rev Endocrinol Metab 6:215–243

    Article  Google Scholar 

  • Zhai QH, Ruebel K, Thompson GB, Lloyd RV (2003) Androgen receptor expression in C-cells and in medullary thyroid carcinoma. Endocr Pathol 14(Summer):159–165, PubMed PMID: 12858007

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Government of India, Department of Biotechnology (DBT) in the form of a major research project (BT/PR4841/Med/12/187/2004) to Prof. M. Michael Aruldhas, and financial support from University Grants Commission under the Special Assistance Programme and the Department of Science and Technology under FIST Programme is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael M. Aruldhas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer India

About this paper

Cite this paper

Stanley, J.A. et al. (2014). Androgen Receptor Expression in Human Thyroid Cancer Tissues: A Potential Mechanism Underlying the Gender Bias in the Incidence of Thyroid Cancers. In: R. Sudhakaran, P. (eds) Perspectives in Cancer Prevention-Translational Cancer Research. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1533-2_10

Download citation

Publish with us

Policies and ethics