Skip to main content

The Interface Between Applied Biocatalysis and Environmental Management

  • Chapter
  • First Online:
Book cover Biotechnology for Environmental Management and Resource Recovery

Abstract

The early thrust of applied biocatalysis was in the traditional areas of fermentation and food processing. Slowly, as enzymology developed, the applications of enzymes (or whole cells) extended to numerous other areas like textile, detergent, leather and oil and fat industries (Godfrey and West, Industrial enzymology. Macmillan Press Ltd., London, 634 p, 1996; Roy and Gupta, J Biochem Biophys 39:220–228, 2002; Polaina and MacCabe, Industrial enzymes: Structure, functions and applications. Springer Verlag, Dordrecht, 2007). Given their twin virtues of higher rates and specificity, it was natural that biocatalysts started being used in environmental management. The concepts, techniques and some illustrative applications (showing the interface between applied biocatalysis and environment management) form the theme of this chapter. To start with, broad areas wherein applied catalysis has been relevant are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antonini E, Carrea G, Cremonesi P (1981) Enzyme catalysed reactions in water-organic solvent two-phase systems. Enzyme Microb Technol 3:291–296

    Article  CAS  Google Scholar 

  • Arnold FH, Georgiou G, Totawa NJ (2003) Directed enzyme evolution: screening and selection methods. In: Arnold FH, Georgiou G (eds) Methods in molecular biology. Humana Press, Totowa

    Google Scholar 

  • Ashby RD, Nunez A, Solaiman DKY, Fogila TA (2005) Sophorolipid biosynthesis from a biodiesel co-product stream. J Am Oil Chem Soc 82:625–630

    Article  CAS  Google Scholar 

  • Biebl H (2001) Fermentation of glycerol by Clostridium pasteurianum – batch and continuous culture studies. J Ind Microbiol Biotechnol 27:18–26

    Article  PubMed  CAS  Google Scholar 

  • Biebl H, Marten S, Hippe H, Deckwer WD (1992) Glycerol conversion to 1, 3-propanediol by new strains of Clostridium butyricum. J Ind Microbiol Biotechnol 15:498–502

    Google Scholar 

  • Bousse L (1996) Whole cell biosensors. Sensors Actuators 34:270–275

    Article  CAS  Google Scholar 

  • Cao L (2006) Carrier bound immobilized enzymes: principles, applications and design. Wiley-Vch Verlag Gmbh and Company, Weinheim, 563 p

    Google Scholar 

  • Clark JH, Budarin V, Deswarte FEI, Hardy JJE, Kerton FM, Hunt AJ, Luque R, Macquarrie DJ, Milkowski K, Rodriguez A, Samuel O, Taveneer SJ, White RJ, Wilson AJ (2006) Green chemistry and the biorefinery – a partnership for a sustainable future. Green Chem 10:853–860

    Article  CAS  Google Scholar 

  • Coombs A (2007) Glycerin bioprocessing goes green. Nat Biotechnol 25:953–954

    Article  PubMed  CAS  Google Scholar 

  • Dahlqvist A, Lindquist B (1971) Lactose intolerance and protein malnutrition. Acta Paediatr Scand 60:488–494

    Article  PubMed  CAS  Google Scholar 

  • Dalal S, Gupta MN (2007) Treatment of phenolic wastewater by horseradish peroxidase immobilized by bioaffinity layering. Chemosphere 67:741–747

    Article  PubMed  CAS  Google Scholar 

  • Dalal S, Kapoor M, Gupta MN (2006) Preparation and characterization of combi-CLEAs catalyzing multiple non-cascade reactions. J Mol Catal B: Enzym 44:128–132

    Article  CAS  Google Scholar 

  • Dalal S, Sharma A, Gupta MN (2007) A multipurpose immobilized biocatalyst with pectinase, xylanase and cellulose activities. Chem Cent J 1:16

    Article  PubMed  CAS  Google Scholar 

  • Danielsson B, Mosbach K (1988) Enzyme thermistors. In: Mosbach K (ed) Methods in enzymology, vol 137. Academic, Orlando, pp 181–197

    Google Scholar 

  • Davis JJ, Green MLH, Hill HAO, Leung YC, Sadler PJ, Sloan J, Xavier AV, Tsang SC (1998) The immobilization of proteins in carbon nanotubes. Inorg Chem Acta 272:261–266

    Article  CAS  Google Scholar 

  • Dua M, Singh A, Sethunathan N, Johri A (2002) Biotechnology and bioremediation: successes and limitations. Appl Microbiol Biotechnol 59:143–152

    Article  PubMed  CAS  Google Scholar 

  • Duran N, Esposito E (2000) Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment. Appl Catal B Environ 28:83–99

    Article  CAS  Google Scholar 

  • Farooqui M, Saleemuddin M, Ulber R, Sosnitza P (1997a) Bioaffinity layering: a novel strategy for the immobilization of large quantities of glycoenzymes. J Biotechnol 55:171–179

    Article  Google Scholar 

  • Farooqui M, Sosnitza P, Saleemuddin M, Ulber R (1997b) Immunoaffinity layering of enzymes. Appl Microbiol Biotechnol 52:373–379

    Article  Google Scholar 

  • Ferrer M, Beloqui A, Golyshin PN (2007) Microbial metagenomes: moving forward industrial biotechnology. J Chem Technol Biotechnol 82:421–423

    Article  CAS  Google Scholar 

  • Francis G, Edinger R, Becker K (2005) A concept for simultaneous wasteland reclamation, fuel production and socio-economic development in degraded areas in India: Need, potential, and perspective of Jatropha plantation. Nat Res Forum 29:12–24

    Article  Google Scholar 

  • Frazzetto G (2003) White biotechnology. EMBO Rep 4:835–837

    Article  PubMed  CAS  Google Scholar 

  • Gaberc-Porekar V, Menart V (2001) Perspectives of immobilized metal affinity chromatography. J Biochem Biophys Methods 49:335–360

    Article  PubMed  CAS  Google Scholar 

  • Gekas V, Lopez-Leiva M (1985) Hydrolysis of lactose: a literature review. Process Biochem 20:2–12

    CAS  Google Scholar 

  • Glaser JA (2005) White biotechnology. Clean Technol Environ Policy 7:233–235

    Article  Google Scholar 

  • Glazer AN, Nikaido H (1995) Environmental applications. In: Glazer AN, Nikaido H (eds) Microbial biotechnology: fundamentals of applied microbiology. W.H. Freeman and Company, New York, pp 561–614

    Google Scholar 

  • Godfrey T, West S (1996) Industrial enzymology. Macmillan Press Ltd., London, 634 p

    Google Scholar 

  • Guisan JM (2006) Immobilization of enzymes and cells. In: Guisan JM (ed) Methods in biotechnology. Humana Press, Totowa, 449 p

    Google Scholar 

  • Gupta MN (1992) Enzyme function in organic solvents. Eur J Biochem 203:25–32

    Article  PubMed  CAS  Google Scholar 

  • Gupta MN (ed) (2000) Methods in non-aqueous enzymology. Birkhauser, Basel

    Google Scholar 

  • Gupta MN (ed) (2002) Methods for affinity based separation of enzymes and proteins. Birkhäuser, Basel, 225 p

    Google Scholar 

  • Gupta MN, Raghava S (2007) Relevance of chemistry to white biotechnology. Chem Cent J 1:17

    Article  PubMed  CAS  Google Scholar 

  • Gupta MN, Roy I (2004) Enzymes in organic media: forms, function and applications. Eur J Biochem 271:1–9

    Article  CAS  Google Scholar 

  • Handelsman J (2004) Metagenomics: applications of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 6:669–685

    Article  Google Scholar 

  • Hayashi O (1963) Direct oxygenation by O2, oxygenases. In: Boyer P, Lardy H, Myrbäck K (eds) The enzymes, vol 8. Academic, New York, p 353

    Google Scholar 

  • Holsinger VH (1978) Application of lactose-modified milk and whey. Food Technol 32:35–40

    CAS  Google Scholar 

  • Huber RE, Gupta MN, Khare SK (1994) The active site and mechanism of β- galactosidase from Escherichia coli. Int J Biochem 26:309–318

    Article  PubMed  CAS  Google Scholar 

  • Jenck JF, Agterberg F, Droescher MJ (2004) Products and processes for a sustainable chemical industry: a review of achievements and prospects. Green Chem 6:544–556

    Article  CAS  Google Scholar 

  • Jiang K, Schadler LS, Segel RW, Zhang X, Zhang HA, Terrones M (2004) Protein immobilization on carbon nanotubes via a 2-step process of diimide-activated amidation. J Mater Chem 14:37–39

    Article  CAS  Google Scholar 

  • Johnson DT, Taconi KA (2007) The glycerin glut: options for the value-added conversion of crude glycerol resulting from biodiesel production. Environ Prog 26:338–348

    Article  CAS  Google Scholar 

  • Koffas M, Cardayre SD (2005) Evolutionary metabolic engineering. Metab Eng 7:1–3

    Article  CAS  Google Scholar 

  • Kosaric N, Asher YJ (1985) The utilization of cheese whey and its components. In: Fiether A (ed) Advance in biochemical engineering, vol 19. Springer, New York, pp 25–60

    Google Scholar 

  • Kretchmer N (1972) Lactose and lactase. Sci Am 227:271–78

    Article  Google Scholar 

  • Langer M, Gabor EM, Liebeton K, Meurer G, Niehaus F, Schulze R, Eck J, Lorenz P (2006) Metagenomics: an inexhaustible access to nature’s diversity. Biotechnol J 1:815–821

    Article  PubMed  CAS  Google Scholar 

  • Liese A, Filho MV (1999) Production of fine chemicals using biocatalysis. Curr Opin Biotechnol 10:595–603

    Article  PubMed  CAS  Google Scholar 

  • Lin R, Liu H, Hao J, Cheng K, Liu D (2005) Enhancement of 1, 3-propanediol Production by Klebsiella pneumoniae with fumarate addition. Biotechnol Lett 27:1755–1759

    Article  PubMed  CAS  Google Scholar 

  • Lorenz P, Zink H (2005) White biotechnology: differences in US and EU approaches? Trends Biotechnol 23:570–574

    Article  PubMed  CAS  Google Scholar 

  • Luisi PL (1985) Enzymes hosted in reverse micelles in hydrocarbon solution. Angew Chem Int Ed 24:439–450

    Article  Google Scholar 

  • Luisi PL, Giomini M, Pileni MP, Robinson BH (1988) Reverse micelles as hosts for proteins and small molecules. Biochem Biophys Acta 974:209–246

    Google Scholar 

  • Madigan MT (2000) Extremophilic bacteria and microbial diversity. Ann Mo Bot Gard 87:3–12

    Article  Google Scholar 

  • Martinek K (1989) Micellar enzymology: potentialities in fundamental and applied areas. Biochem Int 18:871–893

    PubMed  CAS  Google Scholar 

  • Mattiasson B (1988) Affinity immobilization. In: Mosbach K (ed) Methods in enzymology, vol 137. Academic, New York, pp 647–656

    Google Scholar 

  • Modler HW, Mckellar RC, Yaguchi M (1990) Bifidobacteria and bifidogenic factors. Can Inst Food Sci Technol 23:29–41

    Article  CAS  Google Scholar 

  • Mondal K, Sharma A, Gupta MN (2003a) Macro-(affinity ligand) facilitated three phase partitioning (MLFTPP) of α-amylases using modified alginate. Biotechnol Prog 19:493–494

    Article  PubMed  CAS  Google Scholar 

  • Mondal K, Sharma A, Gupta MN (2003b) Macro-(affinity ligand) facilitated three phase partitioning (MLFTPP) for purification of glucoamylase and pullulanase using alginate. Protein Expr Purif 28:190–195

    Article  PubMed  CAS  Google Scholar 

  • Mondal K, Roy I, Gupta MN (2006) Affinity based strategies for protein purification. Anal Chem 78:3499–3504

    Article  PubMed  CAS  Google Scholar 

  • Otten LG, Quax WJ (2004) Directed evolution: selecting today’s biocatalysis. Biomol Eng 22:1–9

    Article  CAS  Google Scholar 

  • Pagliaro M, Ciriminna R, Kimura H, Rossi M, Pina CD (2007) From glycerol to value-added products. Angew Chem Int Ed 46:4434–4440

    Article  CAS  Google Scholar 

  • Palackal N, Brennan Y, Callen WN, Dupree P, Frey G, Goubet F, Hazlewood GP, Healey S, Kang YE, Kretz KA, Lee E, Tan X, Tomlinson GL, Verruto J, Wong VW, Mathur EJ, Short JM, Robertson DE, Steer BA (2004) An evolutionary route to xylanase process fitness. Protein Sci 13(2):494–503

    Article  PubMed  CAS  Google Scholar 

  • Papanikolaou S, Aggelis G (2002) Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single stage continuous culture. Bioresour Technol 82:43–49

    Article  PubMed  CAS  Google Scholar 

  • Papanikolaou P, Muniglia L, Chevalot G, Aggelis G, Marc I (2002) Yarrowia lipolytica as a potential producer of citric acid from raw glycerol. J Appl Microbiol 92:737–744

    Article  PubMed  CAS  Google Scholar 

  • Parales RE, Bruce NC, Schmid A, Wackett LP (2002) Biodegradation, biotransformation and biocatalysis. Appl Environ Microbiol 68:4699–4709

    Article  PubMed  CAS  Google Scholar 

  • Podar M, Reysenbach AL (2006) New opportunities revealed by biotechnological explorations of extremophiles. Curr Opin Biotechnol 17:250–255

    Article  PubMed  CAS  Google Scholar 

  • Polaina J, MacCabe AP (eds) (2007) Industrial enzymes: structure, functions and applications. Springer, Dordrecht, 639 p

    Google Scholar 

  • Polson NA, Hayes MA (2001) Controlling fluids in small places: microfluidics. Anal Chem 73:312A–319A

    Article  PubMed  CAS  Google Scholar 

  • Przybycien TM, Pujar NS, Steele LM (2004) Alternative bioseparation operations: life beyond packed-bed chromatography. Curr Opin Biotechnol 15:469–478

    Article  PubMed  CAS  Google Scholar 

  • Ramanathan K, Danielsson B (2001) Principles and applications of thermal biosensors. Biosensors and bioelectronics. Protein Sci 16:417–423

    CAS  Google Scholar 

  • Ramanathan K, Jönsson BR, Danielsson B (2000) Analysis in non-aqueous milieu using thermistors. In: Gupta MN (ed) Methods in non-aqueous enzymology. Birkhauser, Basel, pp 174–194

    Chapter  Google Scholar 

  • Riggs PD (1990) In: Ausebel FM, Brent R, Kingston RE, Moorey DD, Seidman JG, Smith JA, Struhl K (eds) Current protocols in molecular biology. Wiley, New York. pp 16.6.1–16.6.10

    Google Scholar 

  • Rogers KR, Mascini M (1998) Biosensors for field analytical monitoring. Field Anal Chem Technol 2:317–331

    Article  CAS  Google Scholar 

  • Rossi M, Ciaramella M, Cannio R, Pisani FM, Moracci M, Bartolucci S (2003) Extremophiles 2002. J Bacteriol 185:3683–3690

    Article  PubMed  CAS  Google Scholar 

  • Roy I, Gupta MN (2002) Applied biocatalysis: an overview. Indian J Biochem Biophys 39:220–228.

    PubMed  Google Scholar 

  • Roy I, Gupta MN (2003a) Applications of microwaves in biological sciences. Curr Sci 85:1685–1693

    CAS  Google Scholar 

  • Roy I, Gupta MN (2003b) Smart polymeric materials: emerging biochemical applications. Chem Biol 10:1161–1171

    Article  PubMed  CAS  Google Scholar 

  • Roy I, Pai A, Lali A, Gupta MN (1999) Comparison of batch, packed bed and expanded bed purification of A. niger cellulase using cellulose beads. Bioseparation 8:317–326

    Article  CAS  Google Scholar 

  • Roy I, Mondal K, Gupta MN (2007) Leveraging protein purification strategies in proteomics. J Chromatogr B 849:32–42

    Article  CAS  Google Scholar 

  • Saleemuddin M (1999) Bioaffinity based immobilization of enzymes. Adv Biochem Eng Biotechnol 64:203–226

    PubMed  CAS  Google Scholar 

  • Sayler GS, Simpson ML, Cox CD (2004) Emerging foundations: nano-engineering and bio-microelectronics for environmental biotechnology. Curr Opin Microbiol 7:267–273

    Article  PubMed  CAS  Google Scholar 

  • Shah S, Gupta MN (2007a) Simultaneous refolding, purification and immobilization of xylanase with multi-walled carbon nanotubes. Biochem Biophys Acta 1784(2):363–367. doi:10.1016/j.bbapap. 2007.11.015

    PubMed  Google Scholar 

  • Shah S, Gupta MN (2007b) Obtaining high transeste­rification activity for subtilisin in ionic liquids. Biochem Biophys Acta (Gen Subj) 1770:94–98

    Article  CAS  Google Scholar 

  • Shah S, Gupta MN (2007c) Kinetic resolution of (±)-1-phenylethanol in [Bmim][PF6] using high activity preparations of lipases. Bioorg Med Chem Lett 17:921–924

    Article  PubMed  CAS  Google Scholar 

  • Shah S, Sharma A, Gupta MN (2006) Preparation of cross-linked enzyme aggregates by using bovine serum albumin as a proteic feeder. Anal Biochem 351:207–213

    Article  PubMed  CAS  Google Scholar 

  • Shah S, Solanki K, Gupta MN (2007) Enhancement of lipase activity in non-aqueous media upon immobilization on multi-walled carbon nanotubes. Chem Cent J 1:30

    Article  PubMed  CAS  Google Scholar 

  • Sharma A, Gupta MN (2002) Macro-(affinity ligand) facilitated three phase partitioning (MLFTPP) for purification of xylanase. Biotechnol Bioeng 80:228–232

    Article  PubMed  CAS  Google Scholar 

  • Sharma A, Mondal K, Gupta MN (2003) Separation of enzymes by sequential macroaffinity ligand-facilitated three-phase partitioning. J Chromatogr A 995:127–134

    Article  PubMed  CAS  Google Scholar 

  • Sharpe M (2003) It’s a bug’s life: biosensors for environmental monitoring. J Environ Monit 5:109–113

    Article  CAS  Google Scholar 

  • Sheldon RA (2001) Catalytic reactions in ionic liquids. Chem Commun 23:2399–2407

    Article  CAS  Google Scholar 

  • Sheldon RA, Lau RM, Sorgedrager MJ, van Rantwijk F, Seddon KR (2002) Biocatalysis in ionic liquids. Green Chem 4:147–151

    Article  CAS  Google Scholar 

  • Sheldon RA, Sorgedrager MJ, van Rantwijk F (2005) Cross-linked enzyme aggregates: a novel and versatile method for enzyme immobilization. Biocatal Biotransformation 23:141–147

    Article  CAS  Google Scholar 

  • Shortt C (1999) The probiotic century: historical and current perspectives. Trends Food Sci Technol 10:411–417

    Article  CAS  Google Scholar 

  • Simpson ML, Sayler GS, Applegate BM, Ripp S, Nivens DE, Paulus MJ, Jellison GE (1998) Bioluminescent-bioreporter integrated circuits form novel whole-cell biosensors. Trends Biotechnol 16:332–338

    Article  CAS  Google Scholar 

  • St. Clair NL, Navia MA (1992) Cross-linked enzyme crystals as robust biocatalysts. J Am Chem Soc 114:7314–7316

    Article  CAS  Google Scholar 

  • Stemmer WP (1994a) Rapid evolution of a protein in vitro by DNA shuffling. Nature 370:389–391

    Article  PubMed  CAS  Google Scholar 

  • Stemmer WP (1994b) DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc Natl Acad Sci U S A 91:10747–10751

    Article  PubMed  CAS  Google Scholar 

  • Stimpson E (1957) Lactase-hydrolyzed lactose in feed. US Patent No. 2.781.266

    Google Scholar 

  • Teotia S, Lata R, Gupta MN (2004) Chitosan as a macro-(affinity ligand): Purification of chitinases by affinity precipitation and aqueous two-phase extraction. J Chromatogr A 1052:85–91

    Article  PubMed  CAS  Google Scholar 

  • Tomme P, Boraston A, McLean B, Kormos J, Creagh AL, Sturch K, Gilkes NR, Haynes CA, Warren RA, Kilburn DG (1998) Characterization and affinity applications of cellulose-binding domains. J Chromatogr B 715:283–296

    Article  CAS  Google Scholar 

  • Ulber R, Sell D (eds) (2007) White biotechnology. Springer, Berlin

    Google Scholar 

  • van Rantwijk F, Lau RM, Sheldon RA (2003) Biocatalytic transformations in ionic liquids. Trends Biotechnol 21:131–138

    Article  PubMed  CAS  Google Scholar 

  • Wigley RC (1996) Cheese and whey. In: Godfrey T, West S (eds) Industrial microbiology. Macmillan Press Ltd, London, pp 134–154

    Google Scholar 

  • Williams GJ, Neloson AS, Berry A (2004) Directed evolution of enzymes for biocatalysis and the life sciences. Cell Mol Life Sci 61:3034–3046

    Article  PubMed  CAS  Google Scholar 

  • Wilson L, Betancor L, Ferandez-Lafuente G, Fuentes M, Hidalgo A, Guisan JM, Pessela C, Ferandez-Lafuente R (2004) Cross-linked aggregates of multimeric enzymes: a simple and effective methodology to stabilize their quaternary structure. Biomacromolecules 5:814–817

    Article  PubMed  CAS  Google Scholar 

  • Wu LQ, Payne GF (2004) Biofabrication: using biological materials and biocatalysts to construct nanostructured assemblies. Trends Biotechnol 22:593–599

    Article  PubMed  CAS  Google Scholar 

  • Yun J, Ryu S (2005) Screening for novel enzymes from metagenome and SIGEX, as a way to improve it. Microb Cell Fact 4:8

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The preparation of this chapter and the research work from the authors’ laboratory mentioned in this chapter were supported by Department of Science and Technology core group grant on ‘applied biocatalysis’ and Department of Biotechnology (both Government of India organisations).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munishwar N. Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Raghava, S., Rawat, S., Gupta, M.N. (2013). The Interface Between Applied Biocatalysis and Environmental Management. In: Kuhad, R., Singh, A. (eds) Biotechnology for Environmental Management and Resource Recovery. Springer, India. https://doi.org/10.1007/978-81-322-0876-1_9

Download citation

Publish with us

Policies and ethics