Skip to main content

Ramanujan and Transcendence

  • Chapter
  • First Online:
The Mathematical Legacy of Srinivasa Ramanujan
  • 2258 Accesses

Abstract

In his 1916 memoir entitled “On certain arithmetic function,” Ramanujan considered the three fundamental Eisenstein series P,Q, and R. In that paper, he derived a system of nonlinear differential equations satisfied by them. These equations played a fundamental role in the 1996 work of Nesterenko who calculated the transcendence degree of the field generated by the special values of these Eisenstein series. In this chapter, we discuss the significance of this work in transcendental number theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B.C. Berndt, Ramanujan’s Notebooks, Part II (Springer, Berlin, 1989)

    Book  MATH  Google Scholar 

  2. B.C. Berndt, Ramanujan’s Notebooks, Part V (Springer, Berlin, 1998)

    Book  MATH  Google Scholar 

  3. B.C. Berndt, Ramanujan reaches his hand from his grave to snatch your theorems from you. Asia Pac. Math. Newsl. 1(2), 8–13 (2011)

    MathSciNet  Google Scholar 

  4. S. Chowla, A. Selberg, On Epstein’s zeta function. J. Reine Angew. Math. 227, 86–110 (1967)

    MathSciNet  MATH  Google Scholar 

  5. W. Duke, Continued fractions and modular functions. Bull. Am. Math. Soc. 42(2), 137–162 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Duverney, K. Nishioka, K. Nishioka, I. Shiokawa, Transcendence of Jacobi’s theta series and related results, in Number Theory, Eger, 1996 (de Gruyter, Berlin, 1998), pp. 157–168

    Google Scholar 

  7. B. Gross, On an identity of Chowla and Selberg. J. Number Theory 11(3), 344–348 (1979). S. Chowla Anniversary issue

    Article  MathSciNet  MATH  Google Scholar 

  8. E. Grosswald, Die Werte der Riemannschen Zetafunktion an ungeranden Argumentstellen. Nachr. Akad. Wiss., Gottinger Math.-Phys. Kl. 2, 9–13 (1970)

    MathSciNet  Google Scholar 

  9. S. Gun, M.R. Murty, P. Rath, Algebraic independence of values of modular forms. Int. J. Number Theory 7, 1065–1074 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Gun, M.R. Murty, P. Rath, Transcendental values of certain Eichler integrals. Bull. Lond. Math. Soc. 43(5), 939–952 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. G.H. Hardy, Ramanujan: Twelve Lectures on Subjects Suggested by his Life and Work, 3rd edn. (Chelsea, New York, 1978)

    Google Scholar 

  12. C. Krattenthaler, T. Rivoal, W. Zudilin, Séries hypergéométriques basiques, q analogues des valeurs de la fonction zeta et séries d’Eisenstein. J. Inst. Math. Juissieu 5(1), 53–79 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. S. Lang, Elliptic Functions, 2nd edn. (Springer, New York, 1987)

    Book  MATH  Google Scholar 

  14. D.W. Masser, Elliptic Functions and Transcendence. Lecture Notes in Mathematics, vol. 437 (Springer, Berlin, 1975)

    MATH  Google Scholar 

  15. M.R. Murty, P. Rath, Introduction to transcendental number theory (in press)

    Google Scholar 

  16. M.R. Murty, C. Smyth, R. Wang, Zeros of Ramanujan polynomials. J. Ramanujan Math. Soc. 26, 107–125 (2011)

    MathSciNet  MATH  Google Scholar 

  17. M.R. Murty, C. Weatherby, Special values of the gamma function at CM points. Int. J. Number Theory (in press)

    Google Scholar 

  18. Yu.V. Nesterenko, Algebraic independence for values of Ramanujan functions, in Introduction to Algebraic Independence Theory. Lecture Notes in Math., vol. 1752 (Springer, Berlin, 2001), pp. 27–46

    Chapter  Google Scholar 

  19. S. Ramanujan, On the product \(\prod_{n=0}^{\infty}[1 + (\frac{x }{a+nd})^{3}]\). J. Indian Math. Soc. 7, 209–211 (1915)

    Google Scholar 

  20. S. Ramanujan, Some definite integrals. Messenger of Math. 44, 10–18 (1915)

    Google Scholar 

  21. S. Ramanujan, Proof of certain identities in combinatory analysis. Proc. Camb. Philos. Soc. 19, 214–216 (1919)

    Google Scholar 

  22. T. Rivoal, La fonction zeta de Riemann prend une infinité de valeurs irrationelles aux entiers impairs. C. R. Acad. Sci. Paris Sér. I Math. 331(4), 267–270 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. L.J. Rogers, Second memoir on the expansion of certain infinite products. Proc. Lond. Math. Soc. 25(1), 318–343 (1894)

    Article  Google Scholar 

  24. I. Schur, Ein Beitrag zur additiven Zahlentheorie und zur Theorie der Kettenbruche. Berliner Sitzungsber. 23, 301–321 (1917)

    Google Scholar 

  25. A. Selberg, Über einge arithmetische identitäten. Avh. Norske Vidensk. Akad. Oslo 1(8), (1936), 23s

    Google Scholar 

  26. D. Zagier, Elliptic Modular Forms and Their Applications, in The 1–2–3 of Modular Forms. Universitext (Springer, Berlin, 2008), pp. 1–103

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Murty, M.R., Murty, V.K. (2013). Ramanujan and Transcendence. In: The Mathematical Legacy of Srinivasa Ramanujan. Springer, India. https://doi.org/10.1007/978-81-322-0770-2_6

Download citation

Publish with us

Policies and ethics