Skip to main content

Krüppel-like Factors in the Vascular Endothelium

  • Chapter
  • 581 Accesses

Abstract

Although Krüppel-like factors (KLFs) have been the subject of extensive biological investigation, the role of this family of transcription factors in the biology and pathophysiology of the vascular endothelium is just becoming apparent. Most investigative efforts thus far have focused on KLF2, its contribution to the endothelial vasoprotective phenotype, and its possible impact on atherogenesis. This chapter reflects on the current state of the field and highlights evolving areas where KLFs are emerging as important regulators of endothelial function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson KP, Kern CB, Crable SC, and Lingrel JB (1995) Isolation of a gene encoding a functional zinc finger protein homologous to erythroid Kruppel-like factor: identification of a new multigene family. Mol Cell Biol 15, 5957–5965.

    PubMed  CAS  Google Scholar 

  • Atkins GB, Wang Y, Mahabeleshwar GH, Shi H, Gao H, Kawanami D, Natesan V, Lin Z, Simon DI, and Jain MK (2008) Hemizygous deficiency of Kruppel-like factor 2 augments experimental atherosclerosis. Circ Res 103, 690–693.

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya R, Senbanerjee S, Lin Z, Mir S, Hamik A, Wang P, Mukherjee P, Mukhopadhyay D, and Jain MK (2005) Inhibition of vascular permeability factor/vascular endothelial growth factor-mediated angiogenesis by the Kruppel-like factor KLF2. J Biol Chem 280, 28848–28851.

    Article  PubMed  CAS  Google Scholar 

  • Bi W, Drake CJ, and Schwarz JJ (1999) The transcription factor MEF2C-null mouse exhibits complex vascular malformations and reduced cardiac expression of angiopoietin 1 and VEGF. Dev Biol 211, 255–267.

    Article  PubMed  CAS  Google Scholar 

  • Bieker JJ (2001) Kruppel-like factors: three fingers in many pies. J Biol Chem 276, 34355–34358.

    Article  PubMed  CAS  Google Scholar 

  • Botella LM, Sanchez-Elsner T, Sanz-Rodriguez F, Kojima S, Shimada J, Guerrero-Esteo M, Cooreman MP, Ratziu V, Langa C, Vary CP et al (2002) Transcriptional activation of endoglin and transforming growth factor-beta signaling components by cooperative interaction between Sp1 and KLF6: their potential role in the response to vascular injury. Blood 100, 4001–4010.

    Article  PubMed  CAS  Google Scholar 

  • Brindle NP, Saharinen P, and Alitalo K (2006) Signaling and functions of angiopoietin-1 in vascular protection. Circ Res 98, 1014–1023.

    Article  PubMed  CAS  Google Scholar 

  • Cao S, Fernandez-Zapico ME, Jin D, Puri V, Cook TA, Lerman LO, Zhu X Y, Urrutia R, and Shah V (2005) KLF11-mediated repression antagonizes Sp1/sterol-responsive element-binding protein-induced transcriptional activation of caveolin-1 in response to cholesterol signaling. J Biol Chem 280, 1901–1910.

    Article  PubMed  CAS  Google Scholar 

  • Conkright MD, Wani MA, and Lingrel JB (2001) Lung Kruppel-like factor contains an autoinhibi-tory domain that regulates its transcriptional activation by binding WWP1, an E3 ubiquitin ligase. J Biol Chem 276, 29299–29306.

    Article  PubMed  CAS  Google Scholar 

  • Dai G, Kaazempur-Mofrad MR, Natarajan S, Zhang Y, Vaughn S, Blackman BR, Kamm RD, Garcia-Cardena G, and Gimbrone MA Jr (2004) Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature. Proc Natl Acad Sci U S A 101, 14871–14876.

    Article  PubMed  CAS  Google Scholar 

  • Das A, Fernandez-Zapico ME, Cao S, Yao J, Fiorucci S, Hebbel RP, Urrutia R, and Shah VH (2006) Disruption of an SP2/KLF6 repression complex by SHP is required for farnesoid X receptor-induced endothelial cell migration. J Biol Chem 281, 39105–39113.

    Article  PubMed  CAS  Google Scholar 

  • Dekker RJ, van Soest S, Fontijn RD, Salamanca S, de Groot PG, VanBavel E, Pannekoek H, and Horrevoets AJ (2002) Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Kruppel-like factor (KLF2). Blood 100, 1689–1698.

    Article  PubMed  CAS  Google Scholar 

  • Dekker RJ, van Thienen JV, Rohlena J, de Jager SC, Elderkamp YW, Seppen J, de Vries CJ, Biessen EA, van Berkel TJ, Pannekoek H, and Horrevoets AJ (2005) Endothelial KLF2 links local arterial shear stress levels to the expression of vascular tone-regulating genes. Am J Pathol 167, 609–618.

    PubMed  CAS  Google Scholar 

  • Fukuhara S, Sako K, Minami T, Noda K, Kim HZ, Kodama T, Shibuya M, Takakura N, Koh GY, and Mochizuki N (2008) Differential function of Tie2 at cell-cell contacts and cell-substratum contacts regulated by angiopoietin-1. Nat Cell Biol 10, 513–526.

    Article  PubMed  CAS  Google Scholar 

  • Hamik A, Lin Z, Kumar A, Balcells M, Sinha S, Katz J, Feinberg MW, Gerzsten RE, Edelman ER, and Jain MK (2007) Kruppel-like factor 4 regulates endothelial inflammation. J Biol Chem 282, 13769–13779.

    Article  PubMed  CAS  Google Scholar 

  • Homeister JW, and Patterson C (2008) Zinc fingers in the pizza pie aorta. Circ Res 103, 687–689.

    Article  PubMed  CAS  Google Scholar 

  • Huddleson JP, Srinivasan S, Ahmad N, and Lingrel JB (2004) Fluid shear stress induces endothe-lial KLF2 gene expression through a defined promoter region. Biol Chem 385, 723–729.

    Article  PubMed  CAS  Google Scholar 

  • Jiang J, Chan YS, Loh YH, Cai J, Tong GQ, Lim CA, Robson P, Zhong S, and Ng HH (2008) A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat Cell Biol 10, 353–360.

    Article  PubMed  Google Scholar 

  • Kinderlerer AR, Ali F, Johns M, Lidington EA, Leung V, Boyle JJ, Hamdulay SS, Evans PC, Haskard DO, and Mason JC (2008) KLF2-dependent, shear stress-induced expression of CD59: a novel cytoprotective mechanism against complement-

    Google Scholar 

  • Kojima S, Hayashi S, Shimokado K, Suzuki Y, Shimada J, Crippa MP, and Friedman SL (2000) Transcriptional activation of urokinase by the Kruppel-like factor Zf9/COPEB activates latent TGF-beta1 in vascular endothelial cells. Blood 95, 1309–1316.

    PubMed  CAS  Google Scholar 

  • Kumar A, Lin Z, SenBanerjee S, and Jain MK (2005) Tumor necrosis factor alpha-mediated reduction of KLF2 is due to inhibition of MEF2 by NF-kappaB and histone deacetylases. Mol Cell Biol 25, 5893–5903.

    Article  PubMed  CAS  Google Scholar 

  • Kuo CT, Veselits ML, Barton KP, Lu MM, Clendenin C, and Leiden JM (1997) The LKLF transcription factor is required for normal tunica media formation and blood vessel stabilization during murine embryogenesis. Genes Dev 11, 2996–3006.

    Article  PubMed  CAS  Google Scholar 

  • Lee JS, Yu Q, Shin JT, Sebzda E, Bertozzi C, Chen M, Mericko P, Stadtfeld M, Zhou D, Cheng L et al (2006) Klf2 is an essential regulator of vascular hemodynamic forces in vivo. Dev Cell 11, 845–857.

    Article  PubMed  CAS  Google Scholar 

  • Liao JK, and Laufs U (2005) Pleiotropic effects of statins. Annu Rev Pharmacol Toxicol 45, 89–118.

    Article  PubMed  CAS  Google Scholar 

  • Lin Z, Kumar A, SenBanerjee S, Staniszewski K, Parmar K, Vaughan DE, Gimbrone MA Jr, Balasubramanian V, Garcia-Cardena G, and Jain MK (2005) Kruppel-like factor 2 (KLF2) regulates endothelial thrombotic function. Circ Res 96, e48–57.

    Article  PubMed  CAS  Google Scholar 

  • Mack PJ, Zhang Y, Chung S, Vickerman V, Kamm RD, and Garcia-Cardena G (2008) Biomechanical regulation of endothelial-dependent events critical for adaptive remodeling. J Biol Chem.

    Google Scholar 

  • Makowski L, Boord JB, Maeda K, Babaev VR, Uysal KT, Morgan MA, Parker RA, Suttles J, Fazio S, Hotamisligil GS, and Linton MF (2001) Lack of macrophage fatty-acid-binding protein aP2 protects mice deficient in apolipoprotein E against atherosclerosis. Nat Med 7, 699–705.

    Article  PubMed  CAS  Google Scholar 

  • McCormick SM, Eskin SG, McIntire LV, Teng CL, Lu CM, Russell CG, and Chittur KK (2001) DNA microarray reveals changes in gene expression of shear stressed human umbilical vein endothelial cells. Proc Natl Acad Sci U S A 98, 8955–8960.

    Article  PubMed  CAS  Google Scholar 

  • Methe H, Balcells M, Alegret Mdel C, Santacana M, Molins B, Hamik A, Jain MK, and Edelman ER (2007) Vascular bed origin dictates flow pattern regulation of endothelial adhesion molecule expression. Am J Physiol Heart Circ Physiol 292, H2167–2175.

    Article  PubMed  CAS  Google Scholar 

  • Nusslein-Volhard C, and Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801.

    Article  PubMed  CAS  Google Scholar 

  • Oates AC, Pratt SJ, Vail B, Yan Y, Ho RK, Johnson SL, Postlethwait JH, and Zon LI (2001) The zebrafish klf gene family. Blood 98, 792–801.

    Article  Google Scholar 

  • Parmar KM, Larman HB, Dai G, Zhang Y, Wang ET, Moorthy SN, Kratz JR, Lin Z, Jain MK, Gimbrone MA Jr, and Garcia-Cardena G (2006) Integration of flow-dependent endothelial phenotypes by Kruppel-like factor 2. J Clin Invest 116, 49–58.

    Article  PubMed  CAS  Google Scholar 

  • Parmar KM, Nambudiri V, Dai G, Larman HB, Gimbrone MA Jr, and Garcia-Cardena G (2005) Statins exert endothelial atheroprotective effects via the KLF2 transcription factor. J Biol Chem 280, 26714–26719.

    Article  PubMed  CAS  Google Scholar 

  • Sako K, Fukuhara S, Minami T, Hamakubo T, Song H, Kodama T, Fukamizu A, Gutkind JS, Koh G Y, and Mochizuki N (2008) Angiopoietin-1 induces Kruppel-like factor 2 expression through a phosphoinositide 3-kinase/AKT-dependent activation of myocyte enhancer factor 2. J Biol Chem.

    Google Scholar 

  • Sato TN, Tozawa Y, Deutsch U, Wolburg-Buchholz K, Fujiwara Y, Gendron-Maguire M, Gridley T, Wolburg H, Risau W, and Qin Y (1995) Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 376, 70–74.

    Article  PubMed  CAS  Google Scholar 

  • Sauer F, and Jackle H (1993) Dimerization and the control of transcription by Kruppel. Nature 364, 454–457.

    Article  PubMed  CAS  Google Scholar 

  • Segre JA, Bauer C, and Fuchs E (1999) Klf4 is a transcription factor required for establishing the barrier function of the skin. Nat Genet 22, 356–360.

    Article  PubMed  CAS  Google Scholar 

  • SenBanerjee S, Lin Z, Atkins GB, Greif DM, Rao RM, Kumar A, Feinberg MW, Chen Z, Simon DI, Luscinskas FW et al (2004) KLF2 Is a novel transcriptional regulator of endothelial proin-flammatory activation. J Exp Med 199, 1305–1315.

    Article  PubMed  CAS  Google Scholar 

  • Sen-Banerjee S, Mir S, Lin Z, Hamik A, Atkins GB, Das H, Banerjee P, Kumar A, and Jain MK (2005) Kruppel-like factor 2 as a novel mediator of statin effects in endothelial cells. Circulation 112, 720–726.

    Article  PubMed  CAS  Google Scholar 

  • Suske G, Bruford E, and Philipsen S (2005) Mammalian SP/KLF transcription factors: bring in the family. Genomics 85, 551–556.

    Article  PubMed  CAS  Google Scholar 

  • Wang F, Zhu Y, Huang Y, McAvoy S, Johnson WB, Cheung TH, Chung TK, Lo KW, Yim SF, Yu MM et al (2005) Transcriptional repression of WEE1 by Kruppel-like factor 2 is involved in DNA damage-induced apoptosis. Oncogene 24, 3875–3885.

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Fan C, Topol SE, Topol EJ, and Wang Q (2003) Mutation of MEF2A in an inherited disorder with features of coronary artery disease. Science 302, 1578–1581.

    Article  PubMed  CAS  Google Scholar 

  • Wani MA, Conkright MD, Jeffries S, Hughes MJ, and Lingrel JB (1999) cDNA isolation, genomic structure, regulation, and chromosomal localization of human lung Kruppel-like factor. Genomics 60, 78–86.

    Article  PubMed  CAS  Google Scholar 

  • Weng L, Kavaslar N, Ustaszewska A, Doelle H, Schackwitz W, Hebert S, Cohen JC, McPherson R, and Pennacchio LA (2005) Lack of MEF2A mutations in coronary artery disease. J Clin Invest 115, 1016–1020.

    PubMed  CAS  Google Scholar 

  • Wong AL, Haroon ZA, Werner S, Dewhirst MW, Greenberg CS, and Peters KG (1997) Tie2 expression and phosphorylation in angiogenic and quiescent adult tissues. Circ Res 81, 567–574.

    PubMed  CAS  Google Scholar 

  • Wu J, Bohanan CS, Neumann JC, and Lingrel JB (2008) KLF2 transcription factor modulates blood vessel maturation through smooth muscle cell migration. J Biol Chem 283, 3942–3950.

    Article  PubMed  CAS  Google Scholar 

  • Yet SF, McA'Nulty MM, Folta SC, Yen HW, Yoshizumi M, Hsieh CM, Layne MD, Chin MT, Wang H, Perrella MA et al (1998) Human EZF, a Kruppel-like zinc finger protein, is expressed in vascular endothelial cells and contains transcriptional activation and repression domains. J Biol Chem 273, 1026–1031.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this chapter

Cite this chapter

García-Cardeña, G., Villarreal, G. (2009). Krüppel-like Factors in the Vascular Endothelium. In: Nagai, R., Friedman, S.L., Kasuga, M. (eds) The Biology of Krüppel-like Factors. Springer, Tokyo. https://doi.org/10.1007/978-4-431-87775-2_14

Download citation

Publish with us

Policies and ethics