Skip to main content

Spectral Analysis of fMRI Signal and Noise

  • Chapter

Abstract

We analyzed the noise in functional magnetic resonance imaging (fMRI) scans of the human brain during rest. The noise spectrum in the cortex is well fitted by a model consisting of two additive components: flat-spectrum noise that is uniform throughout the MRI image and frequency-dependent biological noise that is localized to the neural tissue and declines from low to high temporal frequencies. We show that the frequency-dependent component is well fitted by the f −p model with 0 < p < 1 throughout the measured frequency range. The parameters of the model indicate that the characteristic noise is not attributable to the temporal filtering of the hemodynamic response but is an inherent property of the blood oxygenation level-dependent (BOLD) signal. We then analyzed the power spectrum of the BOLD signal for various cognitive tasks. The signal-to-noise ratio of a typical fMRI experiment peaks at around 0.04 Hz.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ogawa S, Lee TM, Ray AR, et al (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872.

    Article  PubMed  CAS  Google Scholar 

  2. Chen CC, Tyler CW, Baseler HA (2003) The statistical properties of BOLD magnetic resonance activity in the human brain. Neuroimage 20:1096–1109.

    Article  PubMed  Google Scholar 

  3. Aguirre GK, Zarahn E, D’Esposito M (1997) Empirical analyses of BOLD fMRI statistics. II. Spatially smoothed data collected under null-hypothesis and experimental conditions. Neuroimage 5:199–212.

    Article  PubMed  CAS  Google Scholar 

  4. Zarahn E, Aguirre GK, D’Esposito M (1997) Empirical analyses of BOLD fMRI statistics. I. Spatially unsmoothed data collected under null-hypothesis conditions. Neuroimage 5:179–197.

    Article  PubMed  CAS  Google Scholar 

  5. Bullmore E, Long C, Suckling J, et al (2001) Colored noise and computational inference in neurophysiological (fMRI) time series analysis: resampling methods in time and wavelet domains. Hum Brain Mapp 12:61–78.

    Article  PubMed  CAS  Google Scholar 

  6. Pfeuffer J, Van de Moortele PF, Ugurbil K, et al (2002) Correction of physiologically induced global off-resonance effects in dynamic echo-planar and spiral functional imaging. Magn Reson Med 47:344–353.

    Article  PubMed  Google Scholar 

  7. Bandettini PA (1999) The temporal resolution of functional MRI. In: Moonen CTW, Bandettini PA (eds) Functional MRI. Springer, Heidelberg, pp 205–220.

    Google Scholar 

  8. Boynton GM, Engel SA, Glover GH, Heeger DJ (1996) Linear systems analysis of functional magnetic resonance imaging in human V1. J Neurosci 76:4207–4221.

    Google Scholar 

  9. Kwong KK, Belliveau JW, Chesler DA, et al (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89: 5675–5679.

    Article  PubMed  CAS  Google Scholar 

  10. Glover GH (1999) Deconvolution of impulse response in event-related BOLD fMRI. Neuroimage 9:416–429.

    Article  PubMed  CAS  Google Scholar 

  11. Stehling MK, Turner R, Mansfield P (1991). Echo-planar imaging: magnetic resonance imaging in a fraction of a second. Science 254:43–50.

    Article  PubMed  CAS  Google Scholar 

  12. Buxton RB, Wong EC, Frank LR (1998) Dynamics of blood flow and oxygenation changes during brain activation: the balloon model. Magn Reson Med 39:855–864.

    Article  PubMed  CAS  Google Scholar 

  13. Tyler CW, Apkarian P, Nakayama K (1978) Multiple spatial-frequency tuning of electrical responses from human visual cortex. Exp Brain Res 33:535–550.

    Article  PubMed  CAS  Google Scholar 

  14. Hu X, Le TH, Ugurbil K (1997) Evaluation of the early response in fMRI in individual subjects using short stimulus duration. Magn Reson Med 37:877–884.

    Article  PubMed  CAS  Google Scholar 

  15. Aubert A, Costalat R (2002) A model of the coupling between brain electrical activity, metabolism, and hemodynamics: application to the interpretation of functional neuroimaging, Neuroimage 17:1162–1181.

    Article  PubMed  Google Scholar 

  16. Chen CC, Tyler CW, Liu CL, et al (2005) Lateral modulation of BOLD activation in unstimulated regions of the human visual cortex. Neuroimage 24:802–809.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Chen, CC., Tyler, C.W. (2008). Spectral Analysis of fMRI Signal and Noise. In: Onozuka, M., Yen, CT. (eds) Novel Trends in Brain Science. Springer, Tokyo. https://doi.org/10.1007/978-4-431-73242-6_4

Download citation

Publish with us

Policies and ethics