Skip to main content

Transcranial Magnetic Stimulation in Cognitive Brain Research

  • Chapter
  • 1312 Accesses

Abstract

Transcranial magnetic stimulation (TMS) is a widely used technique for noninvasive study of basic neurophysiological processes and the relation between the brain and behavior. It has a unique contribution in that it helps determine the need for brain areas for a particular task without the problem of diaschisis and compensatory plasticity seen with traditional lesion studies and that correlation methods of functional neuroimaging alone lack. In cognitive brain research, TMS has been employed to study perception, attention, learning, plasticity, language, and awareness. Its utility has also been extended to therapeutic research on neuropsychiatric conditions including mood disorders, schizophrenia, obsessive-compulsive disorders, and movement disorders. TMS can be combined with other neuroimaging techniques, such as electroencephalography, positron emission tomography, and functional magnetic resonance imaging to evaluate systematically the functional contribution of specific brain regions to cognitive task performance. A brief overview of the current contributions of TMS in cognitive brain research is presented, and important issues to be resolved in the application of TMS to cognitive studies are highlighted. The persistence of the TMS effect and the safety of this method for human studies are also briefly discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barker AT, Jalinous R, Freeston IL (1985) Non-invasive magnetic stimulation of human motor cortex. Lancet 1:1106–1107.

    Article  PubMed  CAS  Google Scholar 

  2. Cowey A (2005) The Ferrier Lecture 2004: what can transcranial magnetic stimulation tell us about how the brain works? Philos Transact R Soc Lond 360:1185–1205.

    Article  Google Scholar 

  3. Jalinous R (2002) Principles of magnetic stimulator design. In: Pascual-Leone A, Davey NJ, Rothwell J, et al (eds) Handbook of transcranial magnetic stimulation. Oxford University Press, New York, pp 30–38.

    Google Scholar 

  4. Cowey A, Walsh V (2000) Magnetically induced phosphenes in sighted, blind and blindsighted observers. Neuroreport 11:3269–3273.

    Article  PubMed  CAS  Google Scholar 

  5. Barker AT (1999) The history and basic principles of magnetic nerve stimulation. Electroencephalogr Clin Neurophysiol Suppl 51:3–21.

    PubMed  CAS  Google Scholar 

  6. Illes J, Gallo M, Kirschen MP (2006) An ethics perspective on transcranial magnetic stimulation (TMS) and human neuromodulation. Behav Neurol 17:149–157.

    PubMed  Google Scholar 

  7. Jahanshahi M, Rothwell J (2000) Transcranial magnetic stimulation studies of cognition: an emerging field. Exp Brain Res 131:1–9.

    Article  PubMed  CAS  Google Scholar 

  8. Ashbridge E, Walsh V, Cowey A (1997) Temporal aspects of visual search studied by transcranial magnetic stimulation. Neuropsychologia 35:1121–1131.

    Article  PubMed  CAS  Google Scholar 

  9. O’Shea J, Muggleton NG, Cowey A, et al (2004) Timing of target discrimination in human frontal eye fields. J Cogn Neurosci 16:1060–1067.

    Article  PubMed  Google Scholar 

  10. Walsh V, Pascual-Leone A (2003) Transcranial magnetic stimulation: a neurochronometrics of mind. MIT Press, Camridge, MA, pp 65–94.

    Google Scholar 

  11. Kujirai T, Caramia MD, Rothwell JC, et al (1993) Corticocortical inhibition in human motor cortex. J Physiol 471:501–519.

    PubMed  CAS  Google Scholar 

  12. Vucic S, Howells J, Trevillion L, et al (2006) Assessment of cortical excitability using threshold tracking techniques. Muscle Nerve 33:477–486.

    Article  PubMed  Google Scholar 

  13. Maeda F, Gangitano M, Thall M, et al (2002) Inter-and intra-individual variability of pairedpulse curves with transcranial magnetic stimulation (TMS). Clin Neurophysiol 113: 376–382.

    Article  PubMed  Google Scholar 

  14. Lefaucheur JP (2005) Motor cortex dysfunction revealed by cortical excitability studies in Parkinson’s disease: influence of antiparkinsonian treatment and cortical stimulation. Clin Neurophysiol 116:244–253.

    Article  PubMed  CAS  Google Scholar 

  15. Oliveri M, Caltagirone C, Filippi MM, et al (2000) Paired transcranial magnetic stimulation protocols reveal a pattern of inhibition and facilitation in the human parietal cortex. J Physiol 529 (Pt 2):461–468.

    Article  PubMed  CAS  Google Scholar 

  16. Pierantozzi M, Panella M, Palmieri MG, et al (2004) Different TMS patterns of intracortical inhibition in early onset Alzheimer dementia and frontotemporal dementia. Clin Neurophysiol 115:2410–2418.

    PubMed  CAS  Google Scholar 

  17. Mainero C, Inghilleri M, Pantano P, et al (2004) Enhanced brain motor activity in patients with MS after a single dose of 3,4-diaminopyridine. Neurology 62:2044–2050.

    PubMed  CAS  Google Scholar 

  18. Wassermann EM, Greenberg BD, Nguyen MB, et al (2001) Motor cortex excitability correlates with an anxiety-related personality trait. Biol Psychiatry 50:377–382.

    Article  PubMed  CAS  Google Scholar 

  19. Costa PT, McCrae RR (1992) Revised NEO Personality Inventory (NEO-PI-R) and NEO Five-Factor Inventory (NEO-FFI) Professional Manual. Psychological Assessment Resources, Odessa, FL.

    Google Scholar 

  20. Stinear CM, Byblow WD (2003) Motor imagery of phasic thumb abduction temporally and spatially modulates corticospinal excitability. Clin Neurophysiol 114:909–914.

    Article  PubMed  Google Scholar 

  21. Koch G, Oliveri M, Torriero S, et al (2005) Modulation of excitatory and inhibitory circuits for visual awareness in the human right parietal cortex. Exp Brain Res 160:510–516.

    Article  PubMed  Google Scholar 

  22. Amassian VE, Cracco RQ, Maccabee PJ, et al (1989) Suppression of visual perception by magnetic coil stimulation of human occipital cortex. Electroencephalogr Clin Neurophysiol 74:458–462.

    Article  PubMed  CAS  Google Scholar 

  23. Pascual-Leone A, Walsh V (2001) Fast backprojections from the motion to the primary visual area necessary for visual awareness. Science 292:510–512.

    Article  PubMed  CAS  Google Scholar 

  24. Rothwell J (2003) Techniques of transcranial magnetic stimulation. In: Boniface S, Ziemann U (eds) Plasticity in the human nervous system: investigations with transcranial magnetic stimulation. Cambridge University Press, Cambridge, UK, pp 26–61.

    Google Scholar 

  25. Touge T, Gerschlager W, Brown P, et al (2001) Are the after-effects of low-frequency rTMS on motor cortex excitability due to changes in the efficacy of cortical synapses? Clin Neurophysiol 112:2138–2145.

    Article  PubMed  CAS  Google Scholar 

  26. Chen R, Classen J, Gerloff C, et al (1997) Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 48:1398–1403.

    PubMed  CAS  Google Scholar 

  27. Maeda F, Keenan JP, Tormos JM, et al (2000) Modulation of corticospinal excitability by repetitive transcranial magnetic stimulation. Clin Neurophysiol 111:800–805.

    Article  PubMed  CAS  Google Scholar 

  28. Pascual-Leone A, Gates J, Dhuna A (1991) Induction of speech arrest and counting errors with rapid-rate transcranial magnetic stimulation. Neurology 41:697–702.

    PubMed  CAS  Google Scholar 

  29. Wassermann EM (1998) Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5–7, 1996. Electroencephalogr Clin Neurophysiol 108:1–16.

    Article  PubMed  CAS  Google Scholar 

  30. Kosslyn SM, Pascual-Leone A, Felician O, et al (1999) The role of area 17 in visual imagery: convergent evidence from PET and rTMS. Science 284:167–170.

    Article  PubMed  CAS  Google Scholar 

  31. Kim Y-H, Min S-J, Ko M-H, et al (2005) Facilitating visuospatial attention for the contralateral hemifield by repetitive TMS on the posterior parietal cortex. Neurosci Lett 382: 280–285.

    Article  PubMed  CAS  Google Scholar 

  32. Hilgetag CC, Theoret H, Pascual-Leone A (2001) Enhanced visual spatial attention ipsilateral to rTMS-induced ‘virtual lesions’ of human parietal cortex. Nat Neurosci 4:953–957.

    Article  PubMed  CAS  Google Scholar 

  33. Robertson EM, Tormos JM, Maeda F, et al (2001) The role of the dorsolateral prefrontal cortex during sequence learning is specific for spatial information. Cereb Cortex 11: 628–635.

    Article  PubMed  CAS  Google Scholar 

  34. Rounis E, Yarrow K, Rothwell JC (2007) Effects of rTMS conditioning over the frontoparietal network on motor versus visual attention. J Cogn Neurosci 19:513–524.

    Article  PubMed  Google Scholar 

  35. Shapiro KA, Pascual-Leone A, Mottaghy FM, et al (2001) Grammatical distinctions in the left frontal cortex. J Cogn Neurosci 13:713–720.

    Article  PubMed  CAS  Google Scholar 

  36. Terao Y, Ugawa Y (2006) Studying higher cerebral functions by transcranial magnetic stimulation. Clin Neurophysiol 59(suppl):9–17.

    Article  Google Scholar 

  37. Muellbacher W, Ziemann U, Wissel J, et al (2002) Early consolidation in human primary motor cortex. Nature 415:640–644.

    Article  PubMed  CAS  Google Scholar 

  38. Robertson EM, Press DZ, Pascual-Leone A (2005) Off-line learning and the primary motor cortex. J Neurosci 25:6372–6378.

    Article  PubMed  CAS  Google Scholar 

  39. Cohen LG, Celnik P, Pascual-Leone A, et al (1997) Functional relevance of cross-modal plasticity in blind humans. Nature 389:180–183.

    Article  PubMed  CAS  Google Scholar 

  40. Hamilton RH, Pascual-Leone A (1998) Cortical plasticity associated with Braille learning. Trends Cogn Sci 2:168–174.

    Article  Google Scholar 

  41. Pascual-Leone A, Cohen LG, Brasil-Neto JP, et al (1994) Differentiation of sensorimotor neuronal structures responsible for induction of motor evoked potentials, attenuation in detection of somatosensory stimuli, and induction of sensation of movement by mapping of optimal current directions. Electroencephalogr Clin Neurophysiol 93:230–236.

    Article  PubMed  CAS  Google Scholar 

  42. Paus T, Jech R, Thompson CJ, et al (1997) Transcranial magnetic stimulation during positron emission tomography: a new method for studying connectivity of the human cerebral cortex. J Neurosci 17:3178–3184.

    PubMed  CAS  Google Scholar 

  43. Huang YZ, Edwards MJ, Rounis E, et al (2005) Theta burst stimulation of the human motor cortex. Neuron 45:201–206.

    Article  PubMed  CAS  Google Scholar 

  44. Pascual-Leone A, Houser CM, Reese K, et al (1993) Safety of rapid-rate transcranial magnetic stimulation in normal volunteers. Electroencephalogr Clin Neurophysiol 89:120–130.

    Article  PubMed  CAS  Google Scholar 

  45. Balslev D, Christensen LO, Lee JH, et al (2004) Enhanced accuracy in novel mirror drawing after repetitive transcranial magnetic stimulation-induced proprioceptive deafferentation. J Neurosci 24:9698–9702.

    Article  PubMed  CAS  Google Scholar 

  46. Kim YH, Park JW, Ko MH, et al (2004) Facilitative effect of high frequency subthreshold repetitive transcranial magnetic stimulation on complex sequential motor learning in humans. Neurosci Lett 367:181–185.

    Article  PubMed  CAS  Google Scholar 

  47. Kohler S, Paus T, Buckner RL, et al (2004) Effects of left inferior prefrontal stimulation on episodic memory formation: a two-stage fMRI-rTMS study. J Cogn Neurosci 16: 178–188.

    Article  PubMed  Google Scholar 

  48. Kirschen MP, Davis-Ratner MS, Jerde TE, et al (2006) Enhancement of phonological memory following transcranial magnetic stimulation (TMS). Behav Neurol 17:187–194.

    PubMed  Google Scholar 

  49. Evers S, Bockermann I, Nyhuis PW (2001) The impact of transcranial magnetic stimulation on cognitive processing: an event-related potential study. Neuroreport 12:2915–2918.

    Article  PubMed  CAS  Google Scholar 

  50. Boroojerdi B, Phipps M, Kopylev L, et al (2001) Enhancing analogic reasoning with rTMS over the left prefrontal cortex. Neurology 56:526–528.

    PubMed  CAS  Google Scholar 

  51. Mottaghy FM, Hungs M, Brugmann M, et al (1999) Facilitation of picture naming after repetitive transcranial magnetic stimulation. Neurology 53:1806–1812.

    PubMed  CAS  Google Scholar 

  52. Topper R, Mottaghy FM, Brugmann M, et al (1998) Facilitation of picture naming by focal transcranial magnetic stimulation of Wernicke’s area. Exp Brain Res 121:371–378.

    Article  PubMed  CAS  Google Scholar 

  53. Mottaghy FM, Sparing R, Topper R (2006) Enhancing picture naming with transcranial magnetic stimulation. Behav Neurol 17:177–186.

    PubMed  Google Scholar 

  54. Klimesch W, Sauseng P, Gerloff C (2003) Enhancing cognitive performance with repetitive transcranial magnetic stimulation at human individual alpha frequency. Eur J Neurosci 17: 1129–1133.

    Article  PubMed  Google Scholar 

  55. Fecteau S, Pascual-Leone A, Theoret H (2006) Paradoxical facilitation of attention in healthy humans. Behav Neurol 17:159–162.

    PubMed  Google Scholar 

  56. Walsh V, Cowey A (2000) Transcranial magnetic stimulation and cognitive neuroscience. Nat Rev Neurosci 1:73–79.

    Article  PubMed  CAS  Google Scholar 

  57. Sack AT, Linden DE (2003) Combining transcranial magnetic stimulation and functional imaging in cognitive brain research: possibilities and limitations. Brain Res Brain Res Rev 43:41–56.

    Article  PubMed  Google Scholar 

  58. Desmond JE, Chen SH, Shieh PB (2005) Cerebellar transcranial magnetic stimulation impairs verbal working memory. Ann Neurol 58:553–560.

    Article  PubMed  Google Scholar 

  59. Maccabee PJ, Eberle L, Amassian VE, et al (1990) Spatial distribution of the electric field induced in volume by round and figure “8” magnetic coils: relevance to activation of sensory nerve fibers. Electroencephalogr Clin Neurophysiol 76:131–141.

    Article  PubMed  CAS  Google Scholar 

  60. Terao Y, Ugawa Y, Hanajima R, et al (2000) Predominant activation of I1-waves from the leg motor area by transcranial magnetic stimulation. Brain Res 859:137–146.

    Article  PubMed  CAS  Google Scholar 

  61. Terao Y, Ugawa Y, Sakai K, et al (1994) Transcranial stimulation of the leg area of the motor cortex in humans. Acta Neurol Scand 89:378–383.

    Article  PubMed  CAS  Google Scholar 

  62. Sparing R, Buelte D, Meister IG, et al (2007) Transcranial magnetic stimulation and the challenge of coil placement: a comparison of conventional and stereotaxic neuronavigational strategies. Hum Brain Mapp [Epub ahead of print]

    Google Scholar 

  63. Bohning DE, Pecheny AP, Epstein CM, et al (1997) Mapping transcranial magnetic stimulation (TMS) fields in vivo with MRI. Neuroreport 8:2535–2538.

    Article  PubMed  CAS  Google Scholar 

  64. Bohning DE, Shastri A, McConnell KA, et al (1999) A combined TMS/fMRI study of intensity-dependent TMS over motor cortex. Biol Psychiatry 45:385–394.

    Article  PubMed  CAS  Google Scholar 

  65. Baudewig J, Paulus W, Frahm J (2000) Artifacts caused by transcranial magnetic stimulation coils and EEG electrodes in T(2)*-weighted echo-planar imaging. Magn Reson Imaging 18:479–484.

    Article  PubMed  CAS  Google Scholar 

  66. Lee L, Siebner HR, Rowe JB, et al (2003) Acute remapping within the motor system induced by low-frequency repetitive transcranial magnetic stimulation. J Neurosci 23:5308–5318.

    PubMed  CAS  Google Scholar 

  67. Sole-Padulles C, Bartres-Faz D, Junque C, et al (2006) Repetitive transcranial magnetic stimulation effects on brain function and cognition among elders with memory dysfunction: a randomized sham-controlled study. Cereb Cortex 16:1487–1493.

    Article  PubMed  Google Scholar 

  68. Kim YH, Jang SH, Han BS, et al (2004) Ipsilateral motor pathway confirmed by diffusion tensor tractography in a patient with schizencephaly. Neuroreport 15:1899–1902.

    Article  PubMed  Google Scholar 

  69. Stinear CM, Barber PA, Smale PR, et al (2007) Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain 130:170–180.

    Article  PubMed  Google Scholar 

  70. Kahkonen S, Komssi S, Wilenius J, et al (2005) Prefrontal transcranial magnetic stimulation produces intensity-dependent EEG responses in humans. Neuroimage 24:955–960.

    Article  PubMed  CAS  Google Scholar 

  71. Komssi S, Kahkonen S, Ilmoniemi RJ (2004) The effect of stimulus intensity on brain responses evoked by transcranial magnetic stimulation. Hum Brain Mapp 21:154–164.

    Article  PubMed  Google Scholar 

  72. Nahas Z, Lomarev M, Roberts DR, et al (2001) Unilateral left prefrontal transcranial magnetic stimulation (TMS) produces intensity-dependent bilateral effects as measured by interleaved BOLD fMRI. Biol Psychiatry 50:712–720.

    Article  PubMed  CAS  Google Scholar 

  73. Klimesch W, Doppelmayr M, Hanslmayr S (2006) Upper alpha ERD and absolute power: their meaning for memory performance. Prog Brain Res 159:151–165.

    Article  PubMed  Google Scholar 

  74. Komssi S, Kahkonen S (2006) The novelty value of the combined use of electroencephalography and transcranial magnetic stimulation for neuroscience research. Brain Res Rev 52:183–192.

    Article  PubMed  Google Scholar 

  75. Komssi S, Aronen HJ, Huttunen J, et al (2002) Ipsi-and contralateral EEG reactions to transcranial magnetic stimulation. Clin Neurophysiol 113:175–184.

    Article  PubMed  Google Scholar 

  76. Rossini PM, Pauri F (2000) Neuromagnetic integrated methods tracking human brain mechanisms of sensorimotor areas ‘plastic’ reorganisation. Brain Res Brain Res Rev 33:131–154.

    Article  PubMed  CAS  Google Scholar 

  77. Rossini PM, Rossi S (2007) Transcranial magnetic stimulation: diagnostic, therapeutic, and research potential. Neurology 68:484–488.

    Article  PubMed  Google Scholar 

  78. Robertson EM, Theoret H, Pascual-Leone A (2003) Studies in cognition: the problems solved and created by transcranial magnetic stimulation. J Cogn Neurosci 15:948–960.

    Article  PubMed  CAS  Google Scholar 

  79. McConnell KA, Nahas Z, Shastri A, et al (2001) The transcranial magnetic stimulation motor threshold depends on the distance from coil to underlying cortex: a replication in healthy adults comparing two methods of assessing the distance to cortex. Biol Psychiatry 49: 454–459.

    Article  PubMed  CAS  Google Scholar 

  80. Rossini PM, Barker AT, Berardelli A, et al (1994) Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application: report of an IFCN committee. Electroencephalogr ClinNeurophysiol 91: 79–92.

    Article  CAS  Google Scholar 

  81. Stewart LM, Walsh V, Rothwell JC (2001) Motor and phosphene thresholds: a transcranial magnetic stimulation correlation study. Neuropsychologia 39:415–419.

    Article  PubMed  CAS  Google Scholar 

  82. Theoret H, Kobayashi M, Ganis G, et al (2002) Repetitive transcranial magnetic stimulation of human area MT/V5 disrupts perception and storage of the motion aftereffect. Neuropsychologia 40:2280–2287.

    Article  PubMed  Google Scholar 

  83. Chen R (2000) Studies of human motor physiology with transcranial magnetic stimulation. Muscle Nerve 9:S26–S32.

    Article  PubMed  CAS  Google Scholar 

  84. Mulleners WM, Chronicle EP, Palmer JE, et al (2001) Suppression of perception in migraine: evidence for reduced inhibition in the visual cortex. Neurology 56:178–183.

    PubMed  CAS  Google Scholar 

  85. Rushworth MF, Ellison A, Walsh V (2001) Complementary localization and lateralization of orienting and motor attention. Nat Neurosci 4:656–661.

    Article  PubMed  CAS  Google Scholar 

  86. Siebner HR, Takano B, Peinemann A, et al (2001) Continuous transcranial magnetic stimulation during positron emission tomography: a suitable tool for imaging regional excitability of the human cortex. Neuroimage 14:883–890.

    Article  PubMed  CAS  Google Scholar 

  87. Paus T, Sipila PK, Strafella AP (2001) Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: an EEG study. J Neurophysiol 86:1983–1990.

    PubMed  CAS  Google Scholar 

  88. Pascual-Leone A, Wassermann EM, Grafman J, et al (1996) The role of the dorsolateral prefrontal cortex in implicit procedural learning: experimental brain research Exp Hirnforsch 107:479–485.

    CAS  Google Scholar 

  89. Pascual-Leone A, Rubio B, Pallardo F, et al (1996) Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression. Lancet 348:233–237.

    Article  PubMed  CAS  Google Scholar 

  90. Pascual-Leone A, Bartres-Faz D, Keenan JP (1999) Transcranial magnetic stimulation: studying the brain-behaviour relationship by induction of ‘virtual lesions’. Philos Transact R Soc Lond 354:1229–1238.

    Article  CAS  Google Scholar 

  91. Herwig U, Padberg F, Unger J, et al (2001) Transcranial magnetic stimulation in therapy studies: examination of the reliability of “standard” coil positioning by neuronavigation. Biol Psychiatry 50:58–61.

    Article  PubMed  CAS  Google Scholar 

  92. Gugino LD, Romero JR, Aglio L, et al (2001) Transcranial magnetic stimulation coregistered with MRI: a comparison of a guided versus blind stimulation technique and its effect on evoked compound muscle action potentials. Clin Neurophysiol 112:1781–1792.

    Article  PubMed  CAS  Google Scholar 

  93. Herwig U, Schonfeldt-Lecuona C, Wunderlich AP, et al (2001) The navigation of transcranial magnetic stimulation. Psychiatry Res 108:123–131.

    Article  PubMed  CAS  Google Scholar 

  94. Paus T (1999) Imaging the brain before, during, and after transcranial magnetic stimulation. Neuropsychologia 37:219–224.

    Article  PubMed  CAS  Google Scholar 

  95. Munchau A, Bloem BR, Irlbacher K, et al (2002) Functional connectivity of human premotor and motor cortex explored with repetitive transcranial magnetic stimulation. J Neurosci 22:554–561.

    PubMed  CAS  Google Scholar 

  96. Gerschlager W, Siebner HR, Rothwell JC (2001) Decreased corticospinal excitability after subthreshold 1 Hz rTMS over lateral premotor cortex. Neurology 57:449–455.

    PubMed  CAS  Google Scholar 

  97. Chen R, Gerloff C, Classen J, et al (1997) Safety of different inter-train intervals for repetitive transcranial magnetic stimulation and recommendations for safe ranges of stimulation parameters. Electroencephalogr Clin Neurophysiol 105:415–421.

    Article  PubMed  CAS  Google Scholar 

  98. Green RM, Pascual-Leone A, Wasserman EM (1997) Ethical guidelines for rTMS research. IRB 19:1–7.

    Article  PubMed  Google Scholar 

  99. Machii K, Cohen D, Ramos-Estebanez C, et al (2006) Safety of rTMS to non-motor cortical areas in healthy participants and patients. Clin Neurophysiol 117:455–471.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Chen, S.H.A. (2008). Transcranial Magnetic Stimulation in Cognitive Brain Research. In: Onozuka, M., Yen, CT. (eds) Novel Trends in Brain Science. Springer, Tokyo. https://doi.org/10.1007/978-4-431-73242-6_3

Download citation

Publish with us

Policies and ethics