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I develop a dynamic theory of luxury consumption, particularly emphasizing the causal effect that pursuit of luxury goods has on wealth accumulation. A quasi-luxury is defined as a good whose marginal rate of substitution is increasing in a utility index. Under certain conditions, it is indeed a luxury good. When current wealth holding falls short of (exceeds) long-run needs, luxury consumption is postponed more (less) easily than necessity consumption, due to a lower (higher) time preference for luxury and/or a higher intertemporal elasticity of substitution thereof. Preferences for quasi-luxuries lead to a higher steady-state value of wealth or capital.
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              Countries which have sumptuary laws, are generally poor.
            
–(Sir Dudley North, Discourses Upon Trade 1691, p. 14)

The original article first appeared in International Economic Review 47: 495–526, 2006. A newly
written addendum has been added to this book chapter.
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	1.In the recent past, for example, Thailand levies luxury taxes on the entertainment industry which could be as much as 25 %. Algeria imposes a 150 % tax on caviar. Indonesia’s luxury tax and import tariff on passenger cars of more than 3,000 cc engines amount to 50 and 80 %, respectively.


	2.For the old controversy on luxuries, see Brinkmann (1957), Mason (1998), and Brewer (1998).


	3.The focus of this chapter is somewhat different from what those old social scientists stressed. They emphasized the effects of luxury on capital accumulation through market expansions and/or creations (see Brinkmann 1957; Mason 1998), whereas I focus on the saving-promoting effect of luxury. However, these two are not so different since capital accumulation could not be sustained without saving when international capital markets are imperfect.


	4.Besley (1989) proposes a new definition for luxury which is useful in “dynamic”applications. However, dynamic optimization is not discussed there. Baland and Ray (1991) examine the effect of capital accumulation on unemployment by using a model in which luxury and basic goods compete for the use of the scarce resources. However, the analysis is essentially static, assuming that capital accumulation is exogenous.


	5.Weakly non-separable preferences under recursive preferences are analyzed by Lucas and Stokey (1984), Judd (1985), Epstein et al. (1988), Shi (1994), and Ikeda (2001, 2003). Shi conducts the most systematic analysis to discuss the intertemporal leisure-consumption choice under distortionary taxation on capital and labor.


	6.In the dynamic macro literature, international (interpersonal) wealth distribution has been explained by referring to differences in four determinants: (i) the subjective discount rate (e.g., Ramsey 1928; Devereux and Shi 1991); (ii) productivity growth (e.g., Obstfeld and Rogoff 1996; Frenkel and Razin 1992); (iii) age structures (e.g., Buiter 1981; Blanchard 1985); and (iv) random income fluctuation (e.g., Clarida 1990; Becker and Zilcha 1997). To focus on implications of the luxury preference, these factors are not considered here.


	7.For the detailed discussions on the regularity conditions, see Epstein (1987a, pp. 72–75) and Obstfeld (1990, pp. 49–50).


	8.This property is controversial especially from the empirical viewpoint. This assumption is necessary for the appealing stability property derived below. For justifications of the assumption, see Epstein (1987a,b). For unstable dynamics under decreasing marginal impatience, see Hirose and Ikeda (2001, 2008).


	9.A quasi-luxury good is identical to what Shi (1994) calls a “less welfare-stabilizing” good. I coin the different terminology so that we can easily see in which direction a wealth increase affects the relative preference for the good, thereby focusing on the issue of luxury consumption. See also Footnote 13.


	10.The index ξ would be zero if the discount rate δ were a function of felicity u, as in Uzawa (1968) and Obstfeld (1982), or if δ were constant, as in the case of time-additive preferences, or if u were constant, as in Epstein and Hynes (1983).


	11.In discrete-time settings, the rate of time preference is defined as the MRS of today’s consumption to tomorrow’s, evaluated at a flat consumption path. The ρ
c is the continuous-time limit of the rate.


	12.In the general case in which relative price p varies over time, the rate of time preference with respect to x depends on \(\dot{p}/p\): \(\rho ^{x} =\delta -g\delta _{x}/g_{x} +\dot{ p}/p\). Throughout the chapter, however, price p does not change over time.


	13.From (10.9) and the definition of ξ, \(\rho _{\phi }^{x} =\rho _{ \phi }^{c} -\xi r\) holds around the steady state. A quasi-luxury good (ξ > 0) can thus be characterized around the steady state by \(\rho _{\phi }^{x} <\rho _{ \phi }^{c}\). Since increasing impatience stabilizes consumption dynamics, this implies that a quasi-luxury good is “less welfare-stabilizing” (Shi 1994) than the other good and vice versa.


	14.Shi (1994, appendix) proves that this assumption ensures the local concavity of the preferences.


	15.Even without Assumption 3, the main results of the chapter remain valid if the steady-state point is locally stable, \(\Psi > 0\) (see (10.16) below).


	16.Hamermesh (1982) estimates the permanent-income elasticities of various consumptions.


	17.Browning and Crossley (2000) define a luxury as a good whose total-expenditure elasticity of the Marshallian demand is larger than unity. My definition is a natural extension of theirs to the dynamic recursive preference framework.


	18.For the linearized case, solution (10.17) gives the optimal policy functions. More generally, solve the first and second conditions in (10.6) for c and x, and denote the results by \(c = C\left (\phi,\lambda \right )\) and \(x = X\left (\phi,\lambda \right )\), respectively. Since the optimal ϕ and λ can be expressed in terms of the value function \(V \left (a\right )\) as \(\phi = V \left (a\right )\) and \(\lambda = V _{a}\left (a\right )\), the optimal consumption can be expressed as time-invariant functions of a: \(c = C\left (V \left (a\right ),V _{a}\left (a\right )\right ) \equiv P^{c}\left (a\right )\) and \(x = X\left (V \left (a\right ),V _{a}\left (a\right )\right ) \equiv P^{x}\left (a\right )\).


	19.Hamermesh (1982) estimates the permanent-income elasticity of “food consumed at home” as 0.240 and that of “food consumed away from home” as 0.820, which implies that the both “foods” are necessity goods. “Nice restaurant dinners” in my example of luxuries represent meals at such fancy restaurants as treated by gastronomic guidebooks (e.g., Michelin).


	20.When current a is larger than \(\bar{a},\ \dot{a} < 0\), \(\dot{\phi }< 0,\) and r −ρ
x < 0, irrespective of whether or not x is a quasi-luxury good. From (10.10) and (10.22), \(\rho ^{x} >\rho ^{c}\) or \(\sigma ^{x} >\sigma ^{c}\) should be valid for x to be a luxury good.


	21.The quasi-luxury preference α, defined by (10.23), can be introduced to Example 1 by setting, e.g., \(u\left (c,x;\alpha \right ) \equiv q\left (c\right )/\alpha + v\left (x\right ),\alpha > 0\) with the same discount rate function as in Example 1. In this case, the non-separability index ξ is given by 

$$\displaystyle{ \xi \left (c,x,\phi \right ) = \frac{\alpha \eta ^{c} -\eta ^{x}} {\left (1 -\alpha \phi \eta ^{c}\right )\left (1 -\phi \eta ^{x}\right )}. }$$


 Therefore, parameter α should satisfy \(\alpha >\eta ^{x}/\eta ^{c}\) for Assumption 2 to be valid.


	22.It might be somewhat controversial to consider an unanticipated α-shock in the context of a perfect foresight model, although it is conventional practice in the literature (e.g., Turnovsky 1995). In Remark 3 below, I shall give a cross-sectional reinterpretation of the analysis.


	23.From Eq. (10.24), the shift of the FF
′ schedule caused by an increase in α is given by 

$$\displaystyle{ \left.\frac{d\bar{x}} {d\alpha } \right \vert _{\mathit{FF}^{{\prime}}} = - \frac{\overline{\text{MRS}}_{\alpha }} {\overline{\text{MRS}}_{x}} = - \frac{\overline{\text{MRS}}_{\alpha }} {\left (\xi +\delta g_{\mathit{xx}}/g_{x}^{2}\right )\left (\mathit{pg}_{x}/\delta \right )}, }$$


 which is positive under Assumption 3.


	24.An increase in β leads to a downward shift of the \(\mathit{RR}^{{\prime}}\) schedule in Fig. 10.2 on one hand. On the other hand, since u < 0, the β-increase enlarges ceteris paribus the utility index, thereby shifting the FF
′ schedule upward. Although the two shifts affect \(\bar{a}\) in the opposite directions, the downward shift of RR
′ is dominant in the sense that \(\bar{a}\) is necessarily reduced.


	25.An increase in quasi-luxury preference α (i.e., an upward shift of the FF
′ schedule) and a decrease in steady-state impatience parameter β (i.e., an upward shift of the RR
′ schedule) commonly increase steady-state wealth and quasi-luxury consumption (see Appendix A.1.2). These two preference shifts could be distinguished by checking the effects on steady-state consumption of quasi-necessities: an increase in α decreases \(\bar{c}\) whereas a decrease in \(\beta\) increases \(\bar{c}\).


	26.If good c is used for both investment and consumption, whereas good x is only used for consumption, then the equilibrium conditions for the two goods markets can be written as 

$$\displaystyle{ \mathit{Bl}^{c}f\left (k\right ) = c +\dot{ k}\text{ and }B\left (1 - l^{c}\right )f\left (k\right ) = \mathit{Bx}, }$$


 where \(l^{c} \equiv L^{c}/L\) represents the proportion of labor employed in sector c. When good x is used for investment purposes, the \(\dot{k}\) term moves to the right-hand side of the second equation. It is obvious that both cases yield (10.28).


	27.To be precise, schedule (10.32) differs from the original RR
′ curve since schedule (10.32) gives the points of intersection between (10.29) and (10.31) that are obtained by changing \(\bar{k}\) parametrically.


	28.Linear approximations of schedule (10.32), as assumed for schedule RR
′ in Fig. 10.2, are no longer sufficient to discuss the effects of taxation under a non-zero τ. It can be shown that \(\partial \bar{k}/\partial \tau\) can only switch its sign if schedule (10.32) has a strictly convex segment so that the schedule becomes flatter than the long-run budget constraint AA
′ as c increases.


	29.By using a recursive-preference model of the Uzawa type, Obstfeld (1982) shows that a terms-of-trade improvement worsens the current account. Ikeda (2001) gives a counter-example in a small country model of weakly nonseparable preferences. The above discussion is its two-country extension.


	30.When the import tariff rate is initially non-zero, the analysis of the two-country equilibrium is too complicated since the symmetric structure of the model is broken. See Ikeda (2003), which examines the effects of import tariffs under initial distortions by using a small country model with weakly nonseparable preferences.


	31.For the proof, see Appendix A.3.2, which analyzes the effects of shifts in quasi-luxury preferences \(\left (\alpha,\alpha ^{{\ast}}\right )\) and impatience parameters \(\left (\beta,\beta ^{{\ast}}\right )\) of the two countries.


	32.This addendum has been newly written for this book chapter.


	33.See Hirose and Ikeda (2008) for satiation under DMI, in which g

                      c
                     = 0 and g

                      x
                     = 0.
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Appendices
Appendix
A.1 Properties of the Optimal Solution in Sect. 2.2

2.1 A.1.1 Dynamics
To obtain an autonomous dynamic system with respect to
\(l \equiv (c,x,a)\), solve (10.6) for ϕ in the form 

$$\displaystyle{ \phi = h\left (c,x,p\right ) \equiv \frac{\mathit{pu}_{c} - u_{x}} {p\delta _{c} -\delta _{x}}
}$$


                    (10.46)
                

 and substitute it for ϕ in (10.7) and in the corresponding Euler equation for x. Then, from (10.8) and (10.9), the optimal dynamics can be expressed in the state-control space by 

$$\displaystyle{ \dot{c} = -\frac{g_{c}\left (c,h\left (c,x,p\right )\right )} {g_{\mathit{cc}}\left (c,h\left (c,x,p\right )\right )}\left [r -\left (\delta \left (c,x\right ) - \frac{\delta _{c}\left (c\right )} {g_{c}\left (c,h\left (c,x,p\right )\right )}g\left (c,x,h\left (c,x,p\right )\right )\right )\right ] }$$




$$\displaystyle{ \dot{x} = -\frac{g_{x}\left (x,h\left (c,x,p\right )\right )} {g_{\mathit{xx}}\left (x,h\left (c,x,p\right )\right )}\left [r -\left (\delta \left (c,x\right ) - \frac{\delta _{x}\left (x\right )} {g_{x}\left (x,h\left (c,x,p\right )\right )}g\left (c,x,h\left (c,x,p\right )\right )\right )\right ] }$$




$$\displaystyle{ \dot{a} = \mathit{ra} - c -\mathit{px} }$$


 Linearizing the system around the steady-state point yields \(\dot{l} = A\hat{l}\), where 

$$\displaystyle{ A \equiv \left (\begin{array}{ccc} \frac{r\delta _{c}} {\xi g_{c}} & -\frac{g_{c}g_{x}} {g_{\mathit{cc}}} \left (\xi + \frac{r\delta _{c}g_{\mathit{xx}}} {\xi g_{x}^{2}g_{c}}\right )&0 \\ \frac{g_{c}g_{x}} {g_{\mathit{xx}}} \left (\xi + \frac{r\delta _{x}g_{\mathit{cc}}} {\xi g_{c}^{2}g_{x}}\right )& -\frac{r\delta _{x}} {\xi g_{x}} & 0 \\ - 1 & -\frac{g_{x}} {g_{c}} & r \end{array} \right ) }$$


                    (10.47)
                

 The trace and determinant of A are computed as 

$$\displaystyle{ \text{trace}A = 2r > 0 }$$




$$\displaystyle{ \det A = -\frac{\mathit{rg}_{c}^{2}g_{x}^{2}} {g_{\mathit{cc}}g_{\mathit{xx}}} \Psi < 0 }$$


 which imply that the steady-state point is saddle-point stable.
2.2 A.1.2 The Effects of Preference Shifts in Sect. 2.4

Introduce quasi-luxury preference α and impatience parameter β into the steady-state equilibrium conditions (10.11) through (10.13), where \(\delta _{\beta } > 0,\delta _{c\beta } =\delta _{x\beta } = 0\) as in Remark 4. Differentiating totally the result yields 

$$\displaystyle{ \delta _{c}\text{d}\bar{c} +\delta _{x}\text{d}\bar{x} = -\delta _{\beta }\text{d}\beta }$$


                    (10.48)
                



$$\displaystyle{ \overline{\text{MRS}}_{c}\text{d}\bar{c} + \overline{\text{MRS}}_{x}\text{d}\bar{x} = -\overline{\text{MRS}}_{\alpha }\text{d}\alpha -\overline{\text{MRS}}_{\beta }\text{d}\beta }$$


                    (10.49)
                



$$\displaystyle{ \text{d}\bar{a} = \frac{\text{d}\bar{c} + p\text{d}\bar{x}} {r} }$$


                    (10.50)
                

 where 

$$\displaystyle{ \overline{\text{MRS}}_{c} = p\left (-\frac{g_{\mathit{cc}}} {g_{c}} +\xi \frac{g_{c}} {r} \right ) > 0;\overline{\text{MRS}}_{x} = \frac{g_{x}^{2}} {\mathit{rg}_{c}} \left (\frac{\mathit{rg}_{\mathit{xx}}} {g_{x}^{2}} +\xi \right ) < 0 }$$


                    (10.51)
                



$$\displaystyle{ \overline{\text{MRS}}_{\beta } = -\frac{p\xi \bar{\phi }\delta _{\beta }} {r} > 0 }$$


                    (10.52)
                


	
                    (a)
                    
                      
An increase in α. From (10.48) and (10.49), the effects of an increase in α on \(\bar{c}\) and \(\bar{x}\) are obtained as 

$$\displaystyle{ \frac{\partial \bar{c}} {\partial \alpha } = - \frac{r\delta _{x}} {g_{x}^{2}\Psi }\overline{\text{MRS}}_{\alpha } < 0 }$$




$$\displaystyle{ \frac{\partial \bar{x}} {\partial \alpha } = \frac{r\delta _{c}} {g_{x}^{2}\Psi }\overline{\text{MRS}}_{\alpha } > 0 }$$


 Substituting the above equations into (10.50) yields (10.26): 

$$\displaystyle{ \frac{\partial \bar{a}} {\partial \alpha } = \frac{\xi } {g_{x}\Psi }\overline{\text{MRS}}_{\alpha } > 0 }$$




                      By substituting (10.26) and the above results into (10.17), the impact effects on \(c\left (0\right )\) and \(x\left (0\right )\) are given by 

$$\displaystyle{ \frac{\partial c\left (0\right )} {\partial \alpha } = \frac{g_{x}^{2}\Psi +\xi g_{\mathit{xx}}\omega } {\left (g_{\mathit{xx}} + p^{2}g_{\mathit{cc}}\right )\Psi }\overline{\text{MRS}}_{\alpha } < 0 }$$




$$\displaystyle{ \frac{\partial x\left (0\right )} {\partial \alpha } = - \frac{g_{c}^{2}\Psi -\xi g_{\mathit{cc}}\omega } {\left (g_{\mathit{xx}} + p^{2}g_{\mathit{cc}}\right )g_{c}\Psi }\overline{\text{MRS}}_{\alpha } }$$


 which can be shown to be positive.

                    
                  
	
                    (b)
                    
                      
An increase in β. From (10.48) and (10.49), the effect of an increase in β on the steady-state consumption basket can be obtained as 

$$\displaystyle{ \frac{\partial \bar{c}} {\partial \beta } = \frac{r\left (\overline{\text{MRS}}_{x}\delta _{\beta } -\overline{\text{MRS}}_{\beta }\delta _{x}\right )} {g_{x}^{2}\Psi } < 0 }$$




$$\displaystyle{ \frac{\partial \bar{x}} {\partial \beta } = -\frac{r\left (\overline{\text{MRS}}_{c}\delta _{\beta } -\overline{\text{MRS}}_{\beta }\delta _{c}\right )} {g_{x}^{2}\Psi } < 0. }$$


 The effect on \(\bar{a}\) is thus derived from (10.50) as 

$$\displaystyle{ \frac{\partial \bar{a}} {\partial \beta } = \frac{1} {r}\left (\frac{\partial \bar{c}} {\partial \beta } + p\frac{\partial \bar{x}} {\partial \beta } \right ) < 0 }$$


                    (10.53)
                



                    
                  


Consider increases in quasi-luxury preference α and impatience parameter β at the same time. The effect on \(\bar{a}\) is given by combining (10.26) and (10.53) as 

$$\displaystyle{ \text{d}\bar{a} = \frac{\partial \bar{a}} {\partial \alpha } \text{d}\alpha + \frac{\partial \bar{a}} {\partial \beta } \text{d}\beta }$$


 where \(\partial \bar{a}/\partial \alpha > 0,\partial \bar{a}/\partial \beta < 0,\) implying that d\(\bar{a}\) is positive when dα is sufficiently large relative to dβ. This result can be applied to a comparison between two consumers with different \(\left (\alpha,\beta \right )\)’s in Remark 4.
A.2 Solutions to the Production-Economy Model in Sect. 3.1

3.1 A.2.1 Dynamics
In the production-economy model in Sect. 3.1, the equilibrium dynamics for \(\left (c,k,p,r,x,\phi \right )\) are generated by (10.3), (10.6), (10.7), (10.27), (10.28) and the transversality condition. The system can be reduced to the autonomous system, 

$$\displaystyle\begin{array}{rcl} \dot{c}& =& -\dfrac{g_{c}\left (c,h\left (c,x,p\right )\right )} {g_{\mathit{cc}}\left (c,h\left (c,x,p\right )\right )} {}\\ & & \left [\mathit{Bf }^{{\prime}}(k) -\left (\delta \left (c,x\right ) - \dfrac{\delta _{c}\left (c\right )} {g_{c}\left (c,h\left (c,x,p\right )\right )}g\left (c,x,h\left (c,x,p\right )\right )\right )\right ] {}\\ \end{array}$$




$$\displaystyle\begin{array}{rcl} \dot{x}& =& -\frac{g_{x}\left (x,h\left (c,x,p\right )\right )} {g_{\mathit{xx}}\left (x,h\left (c,x,p\right )\right )} {}\\ & & \left [\mathit{Bf }^{{\prime}}(k) -\left (\delta \left (c,x\right ) - \frac{\delta _{x}\left (x\right )} {g_{x}\left (c,h\left (c,x,p\right )\right )}g\left (c,x,h\left (c,x,p\right )\right )\right )\right ] {}\\ \end{array}$$




$$\displaystyle{ \dot{k} = \mathit{Bf }\left (k\right ) - c -\mathit{Bx} }$$


 Let m denote \(\left (c,\phi,k\right )^{{\prime}}\). The autonomous system can be linearized as \(\dot{m} = G\hat{m}\), where 

$$\displaystyle{ G = \left (\begin{array}{ccc} \frac{\delta \delta _{c}} {\xi g_{c}} & -\frac{g_{c}g_{x}} {g_{\mathit{cc}}} \left (\xi + \frac{\delta \delta _{c}g_{\mathit{xx}}} {\xi g_{x}^{2}g_{c}}\right )& - \frac{g_{c}} {g_{\mathit{cc}}} \mathit{Bf }^{{\prime\prime}} \\ \frac{g_{c}g_{x}} {g_{\mathit{xx}}} \left (\xi + \frac{\delta \delta _{x}g_{\mathit{cc}}} {\xi g_{c}^{2}g_{x}}\right )& - \frac{\delta \delta _{x}} {\xi g_{x}} & - \frac{g_{x}} {g_{\mathit{xx}}} \mathit{Bf }^{{\prime\prime}} \\ - 1 & - B & \mathit{Bf }^{{\prime}} \end{array} \right ) }$$


 The trace of G equals 2Bf
′ > 0. The determinant can be computed as 

$$\displaystyle{ \det G = -\frac{g_{c}^{2}g_{x}^{2}\mathit{Bf }^{{\prime}}} {g_{\mathit{cc}}g_{\mathit{xx}}} \Psi -\frac{B^{2}g_{c}f^{{\prime}}f^{{\prime\prime}}} {g_{\mathit{cc}}} \left (1 + B^{2} \frac{g_{\mathit{cc}}} {g_{\mathit{xx}}}\right ) < 0 }$$


 implying that the equilibrium dynamics are saddle-point stable. It can be shown that the two positive roots are inconsistent with the transversality condition.
3.2 A.2.2 The Effects of Quasi-luxury Taxes
Take the total differential of (10.29), (10.35), and (10.31) to obtain 

$$\displaystyle{ \left (\begin{array}{ccc} \delta _{c} & \delta _{x} & -\mathit{Bf }^{{\prime\prime}} \\ \overline{\text{MRS}}_{\bar{c}}&\overline{\text{MRS}}_{\bar{x}}& 0 \\ 1 & B & -\mathit{Bf }^{{\prime}} \end{array} \right )\left (\begin{array}{c} \text{d}\bar{c}\\ \text{d} \bar{x} \\ \text{d}\bar{k} \end{array} \right ) = \left (\begin{array}{c} 0\\ B\text{d} \tau - \overline{\text{MRS}}_{ \alpha }\text{d}\alpha \\ 0 \end{array} \right ) }$$


 After tedious computation, the determinant \(\Lambda \) of this matrix can be obtained as 

$$\displaystyle\begin{array}{rcl} \Lambda & =& (1+\tau )B\left \{g_{c}g_{x}\left.\Psi \right \vert _{r=\mathit{Bf }^{{\prime}}} + \mathit{Bf }^{{\prime\prime}}\left (\frac{g_{\mathit{xx}}} {g_{x}} + \frac{\mathit{Bg}_{\mathit{cc}}} {g_{c}} +\tau \frac{\xi g_{c}} {f^{{\prime}}}\right )\right \} {}\\ & =& B\Omega /\left (1+\tau \right ) {}\\ \end{array}$$


 where \(\Psi \) is given by (10.16); and \(\Omega \) is defined in Remark 6. \(\Omega \) and hence \(\Lambda \) are strictly positive since \(\Omega \) can be rewritten as 

$$\displaystyle{ \begin{array}{lll} \Omega & =&B(1+\tau )^{2}\frac{g_{c}g_{x}} {\delta \delta _{x}} \left \{ \frac{\delta _{x}} {g_{x}}(\delta _{x}f^{{\prime}}-\mathit{Bf }^{{\prime\prime}})\left (\xi -\frac{\delta g_{\mathit{cc}}} {g_{c}^{2}} \right )\right. \\ & & + \left. \frac{\delta _{x}} {g_{c}}(\delta _{c}f^{{\prime}}- f^{{\prime\prime}})\left (-\frac{\delta g_{\mathit{xx}}} {g_{x}^{2}} -\xi \right )\right \} \end{array} }$$


 which is strictly positive under Assumption 3.
Using these results, we obtain 

$$\displaystyle{ \text{d}\bar{c} = \frac{(1+\tau )\left (\delta _{x}f^{{\prime}}-\mathit{Bf }^{{\prime\prime}}\right )\left (B\text{d}\tau -\overline{\text{MRS}}_{\alpha }\text{d}\alpha \right )} {\Omega } }$$




$$\displaystyle{ \text{d}\bar{x} = \frac{(1+\tau )\left (\delta _{c}f^{{\prime}}- f^{{\prime\prime}}\right )\left (B\text{d}\tau -\overline{\text{MRS}}_{\alpha }\text{d}\alpha \right )} {\Omega } }$$




$$\displaystyle{ \text{d}\bar{k} = \frac{(1+\tau )\delta _{x}\left (\frac{\delta _{c}} {\delta _{x}} - \frac{1} {B}\right )\left (B\text{d}\tau -\overline{\text{MRS}}_{\alpha }\text{d}\alpha \right )} {\Omega } }$$


                    (10.54)
                

 Equation (10.54) implies (10.34), (10.36), and the result in Remark 6.
A.3 The Two-Country Equilibrium in Sect. 3.2

4.1 A.3.1 Dynamics
Let us derive the equilibrium local dynamics around the steady-state point with the identical preference structure (10.38). Since Y is constant, market equilibrium requires \(\dot{c} +\dot{ c}^{{\ast}} = 0\). Substituting (10.7) and the corresponding equation for country F into this condition yields 

$$\displaystyle{ c\sigma ^{c}\left (r -\rho ^{c}\right ) + c^{{\ast}}\sigma ^{c{\ast}}\left (r -\rho ^{c{\ast}}\right ) = 0 }$$


 From (10.38), \(\bar{c}\sigma ^{c}\left (\bar{c},\bar{\phi }\right )\) equals \(\bar{c}^{{\ast}}\sigma ^{c{\ast}}\left (\bar{c}^{{\ast}},\bar{\phi }^{{\ast}}\right )\); function \(\rho ^{c}\left (\bullet,\bullet,\bullet \right )\) is identical to function \(\rho ^{c{\ast}}\left (\bullet,\bullet,\bullet \right )\); and \(\bar{\rho }^{c} =\bar{\rho } ^{c{\ast}} =\bar{ r}\). Linearizing the above equation thus yields 

$$\displaystyle{ \left (\hat{r} -\hat{\rho }^{c}\left (c,x,\phi \right )\right ) + \left (\hat{r} -\hat{\rho }^{c}\left (c^{{\ast}},x^{{\ast}},\phi ^{{\ast}}\right )\right ) = 0 }$$


 where \(\hat{\rho }^{c}\left (c,x,\phi \right ) =\hat{\rho }_{ c}^{c}\hat{c} +\hat{\rho }_{ x}^{c}\hat{x} +\hat{\rho }_{ \phi }^{c}\hat{\phi }\), etc. Solve the equation for \(\hat{r}\) and substitute (10.46) into the result to obtain 

$$\displaystyle{ \hat{r} = \frac{\hat{\rho }^{c}\left (c,x,h\left (c,x,p\right )\right ) +\hat{\rho } ^{c}\left (Y - c,X - x,h\left (Y - c,X - x,p\right )\right )} {2} }$$


                    (10.55)
                

 where \(h\left (\bullet,\bullet,\bullet \right ) = h^{{\ast}}\left (\bullet,\bullet,\bullet \right )\) is substituted. By computing \(\hat{\rho }^{c}\left (c,x,h\left (c,x,p\right )\right )\) and \(\hat{\rho }^{c}\left (Y - c,X - x,h\left (Y - c,X - x,p\right )\right )\), this can be reduced to 

$$\displaystyle{ \hat{r} = \frac{\bar{r}\delta _{c}} {\xi g_{x}}\hat{p} }$$


                    (10.56)
                


Substituting (10.55) and (10.46) successively into the linear approximate of (10.7) yields 

$$\displaystyle{ \dot{c} = - \frac{g_{c}} {2g_{\mathit{cc}}}\left [\hat{\rho }^{c}\left (Y - c,X - x,h\left (Y - c,X - x,p\right )\right ) -\hat{\rho }^{c}\left (c,x,h\left (c,x,p\right )\right )\right ] }$$


 which can be computed as 

$$\displaystyle{ \dot{c} = \frac{\bar{r}\delta _{c}} {\xi g_{c}}\hat{c} -\frac{g_{c}g_{x}} {g_{\mathit{cc}}} \left (\xi +\frac{\bar{r}\delta _{c}g_{\mathit{xx}}} {\xi g_{x}^{2}g_{c}}\right )\hat{x} }$$


                    (10.57)
                

 In the same way, the law of motion for x is given by 

$$\displaystyle{ \dot{x} = \frac{g_{c}g_{x}} {g_{\mathit{xx}}} \left (\xi +\frac{\bar{r}\delta _{x}g_{\mathit{cc}}} {\xi g_{c}^{2}g_{x}}\right )\hat{c} -\frac{\bar{r}\delta _{x}} {\xi g_{x}}\hat{x} }$$


                    (10.58)
                


To obtain a dynamic equation for \(p,\) substitute (10.46) into (10.3), thereby obtaining \(\dot{h} = -g\left (c,x,h\left (c,x,p\right )\right )\). It can be linearized as 

$$\displaystyle{ h_{c}\dot{c} + h_{x}\dot{x} + h_{p}\dot{p} = -\left (g_{c} + g_{\phi }h_{c}\right )\hat{c} -\left (g_{x} + g_{\phi }h_{x}\right )\hat{x} - g_{\phi }h_{p}\hat{p} }$$


 Substitute (10.57) and (10.58) into the linearized equation. The resulting equation can be solved for \(\dot{p}\) as \(\dot{p} =\delta \hat{ p},\) which implies 

$$\displaystyle{ \hat{p} = 0 }$$


                    (10.59)
                

 for all t > 0: the relative price of quasi-luxury good x adjusts immediately after a permanent shock. Applying this to (10.56) in turn yields 

$$\displaystyle{ \hat{r} = 0 }$$


                    (10.60)
                

 for all t > 0. The equilibrium interest rate always equals the steady-state value.
From (10.59) and (10.60), (10.37) is linearized as 

$$\displaystyle{ \dot{b} =\bar{ r}\hat{b} -\hat{ c} -\bar{ p}\hat{x} }$$


                    (10.61)
                

 Equations (10.57), (10.58) and (10.61) are combined as an autonomous dynamic system for \(n \equiv \left (c,x,b\right )\), 

$$\displaystyle{ \dot{n}\left (t\right ) = A\hat{n}\left (t\right ) }$$


 where A is matrix (10.47) describing the local dynamics for individuals’ optimal consumption in Sect. 2. As seen in Sect. 2, A has one positive root and one negative root ω. The resultant equilibrium path is very similar to that obtained in (10.17): 

$$\displaystyle{ \dot{b}\left (t\right ) =\omega \hat{ b}\left (t\right ),\text{ }\hat{b}\left (0\right ) = b_{0} -\bar{ b} }$$




$$\displaystyle{ \hat{c}\left (t\right ) = -\hat{c}^{{\ast}}\left (t\right ) = - \frac{g_{x}^{2}} {\left (g_{\mathit{xx}} +\bar{ p}^{2}g_{\mathit{cc}}\right )}\left \{\frac{g_{\mathit{xx}}\omega } {g_{x}^{2}} + \left (-\frac{\bar{r}g_{\mathit{xx}}} {g_{x}^{2}} -\xi \right )\right \}\hat{b}\left (t\right ) }$$




$$\displaystyle{ \hat{x}\left (t\right ) = -\hat{x}^{{\ast}}\left (t\right ) = \frac{g_{x}g_{c}} {\left (g_{\mathit{xx}} +\bar{ p}^{2}g_{\mathit{cc}}\right )}\left \{\frac{g_{\mathit{cc}}\left (\bar{r}-\omega \right )} {g_{c}^{2}} -\xi \right \}\hat{b}\left (t\right ) }$$




$$\displaystyle{ \hat{\phi }\left (t\right ) = -\hat{\phi }^{{\ast}}\left (t\right ) = g_{ c}\hat{b}\left (t\right ) }$$


 where \(\hat{\phi }\) and \(\hat{\phi }^{{\ast}}\) are obtained by substituting (10.59) and the solution for \(\left (\hat{c},\hat{x}\right )\) into (10.46) and the corresponding equation for country F, \(\phi ^{{\ast}} = h\left (Y - c,X - x,p\right )\).
4.2 A.3.2 The Effects of Preference Shifts
With quasi-luxury preferences \(\left (\alpha,\alpha ^{{\ast}}\right )\) and impatience parameters \(\left (\beta,\beta ^{{\ast}}\right )\), where \(\beta ^{\left ({\ast}\right )}\) satisfies \(\delta _{\beta }^{\left ({\ast}\right )} > 0,\delta _{c\beta }^{\left ({\ast}\right )} =\delta _{ x\beta }^{\left ({\ast}\right )} = 0\), as in Remark 4 in the text, the steady-state equilibrium conditions (10.39) through (10.42) reduce to 

$$\displaystyle{ \delta \left (\bar{c},\bar{x};\beta \right ) =\delta \left (Y -\bar{ c},X -\bar{ x};\beta ^{{\ast}}\right ) =\bar{ r} }$$




$$\displaystyle{ \overline{\text{MRS}}\left (\bar{c},\bar{x};\alpha,\beta \right ) = \overline{\text{MRS}}^{{\ast}}\left (Y -\bar{ c},X -\bar{ x};\alpha ^{{\ast}},\beta ^{{\ast}}\right ) =\bar{ p} }$$




$$\displaystyle{ \bar{a} -\bar{ a}^{{\ast}} = \frac{2\bar{c} - Y +\bar{ p}\left (2\bar{x} - X\right )} {\bar{r}} }$$


 Differentiate totally these equations. Under assumption (10.38), the result can be arranged as 

$$\displaystyle{ \delta _{c}\text{d}\bar{c} +\delta _{x}\text{d}\bar{x} = -\delta _{\beta }\left (\frac{\text{d}\beta -\text{d}\beta ^{{\ast}}} {2} \right ) }$$


                    (10.62)
                



$$\displaystyle{ \overline{\text{MRS}}_{c}\text{d}\bar{c} + \overline{\text{MRS}}_{x}\text{d}\bar{x} = -\overline{\text{MRS}}_{\alpha }\left (\frac{\text{d}\alpha -\text{d}\alpha ^{{\ast}}} {2} \right ) -\overline{\text{MRS}}_{\beta }\left (\frac{\text{d}\beta -\text{d}\beta ^{{\ast}}} {2} \right ) }$$




$$\displaystyle{ \text{d}\bar{a} -\text{d}\bar{a}^{{\ast}} = \frac{2} {\bar{r}}\left (\text{d}\bar{c} +\bar{ p}\text{d}\bar{x}\right ) }$$


                    (10.63)
                



$$\displaystyle{ \text{d}\bar{r} =\delta _{\beta }\left (\frac{\text{d}\beta + \text{d}\beta ^{{\ast}}} {2} \right ) }$$


                    (10.64)
                



$$\displaystyle{ \text{d}\bar{p} = \overline{\text{MRS}}_{\alpha }\left (\frac{\text{d}\alpha + \text{d}\alpha ^{{\ast}}} {2} \right ) + \overline{\text{MRS}}_{\beta }\left (\frac{\text{d}\beta + \text{d}\beta ^{{\ast}}} {2} \right ) }$$


 where the partial derivatives of \(\overline{\text{MRS}}\) are given by (10.25), (10.51), and (10.52).
From (10.62) through (10.63), the effects on \(\left (\bar{c},\bar{x},\bar{a} -\bar{ a}^{{\ast}}\right )\) can be derived as follows: 

$$\displaystyle{ \text{d}\bar{c} = -\text{d}\bar{c}^{{\ast}} = -\frac{\bar{r}\delta _{x}\overline{\text{MRS}}_{\alpha }} {g_{x}^{2}\Psi } \left (\frac{\text{d}\alpha -\text{d}\alpha ^{{\ast}}} {2} \right ) + \frac{\bar{r}\left (\overline{\text{MRS}}_{x}\delta _{\beta } -\overline{\text{MRS}}_{\beta }\delta _{x}\right )} {g_{x}^{2}\Psi } \left (\frac{\text{d}\beta -\text{d}\beta ^{{\ast}}} {2} \right ) }$$




$$\displaystyle{ \text{d}\bar{x} = -\text{d}\bar{x}^{{\ast}} = \frac{\bar{r}\delta _{c}\overline{\text{MRS}}_{\alpha }} {g_{x}^{2}\Psi } \left (\frac{\text{d}\alpha -\text{d}\alpha ^{{\ast}}} {2} \right ) -\frac{\bar{r}\left (\overline{\text{MRS}}_{c}\delta _{\beta } -\overline{\text{MRS}}_{\beta }\delta _{c}\right )} {g_{x}^{2}\Psi } \left (\frac{\text{d}\beta -\text{d}\beta ^{{\ast}}} {2} \right )\quad \quad }$$


                    (10.65)
                



$$\displaystyle{ \text{d}\bar{a} -\text{d}\bar{a}^{{\ast}} = \frac{\xi \overline{\text{MRS}}_{\alpha }} {g_{x}\Psi } \left (\text{d}\alpha -\text{d}\alpha ^{{\ast}}\right ) - \frac{\delta _{\beta }} {\bar{r}g_{c}\Psi }\left (\bar{\phi }\xi ^{2} -\frac{\bar{r}g_{\mathit{xx}}} {g_{x}^{2}} -\frac{\bar{r}g_{\mathit{cc}}} {g_{c}^{2}} \right )\left (\text{d}\beta -\text{d}\beta ^{{\ast}}\right ) }$$


                    (10.66)
                

 The effect (10.45) of an increase in α on net foreign assets is obtained from (10.41) and (10.64) through (10.65) as 

$$\displaystyle\begin{array}{rcl} \frac{\partial \bar{b}} {\partial \alpha } & =& \frac{1} {\bar{r}} \frac{\partial \bar{c}} {\partial \alpha } + \frac{\bar{p}} {\bar{r}} \frac{\partial \bar{x}} {\partial \alpha } + \frac{X/2 - y_{x}} {\bar{r}} \frac{\partial \bar{p}} {\partial \alpha } -\frac{\bar{b}} {\bar{r}} \frac{\partial \bar{r}} {\partial \alpha } {}\\ & =& \left \{\xi -\left (y_{x} -\frac{X} {2} \right )\frac{g_{x}\Psi } {\bar{r}} \right \}\frac{\overline{\text{MRS}}_{\alpha }} {2g_{x}\Psi } {}\\ \end{array}$$



Corollary 3 follows from (10.66): Since \(\left (\bar{\phi }\xi ^{2} -\frac{\bar{r}g_{\mathit{xx}}} {g_{x}^{2}} -\frac{\bar{r}g_{\mathit{cc}}} {g_{c}^{2}} \right ) > 0\), the equation implies that the optimal \(\bar{a}\) of a higher-β country can be larger than that of a lower-\(\beta\) country if the higher-β country has a sufficiently big α, compared with the lower-β country’s.
Addendum: The Case of DMI
In the text of this chapter, I have followed the literature (e.g., Uzawa 1968) in assuming that consumers exhibit increasing marginal impatience (hereafter IMI): δ

                  c
                 > 0 and δ

                  x
                 > 0.Footnote 32 As shown in Hirose and Ikeda (2008), however, the assumption is empirically controversial. In this addendum, I discuss briefly on how the results would be (or not be) changed when assuming decreasing marginal impatience (hereafter DMI): 

$$\displaystyle{ \delta _{c} < 0\text{ and }\delta _{x} < 0 }$$



As pointed out by Hirose and Ikeda (2008), under DMI, the wealthier people are more patience and, ceteris paribus, become even wealthier over time. The property DMI is thus, by nature, destabilizing. Therefore, in the models of Sects. 2 and 3.2, where the interest rate is, exogenously or endogenously, constant over time, the dynamics could not satisfy the saddle-point stability under DMI. Indeed, since \(\Psi \) in (10.16) can be rewritten as 

$$\displaystyle{ \Psi = -\left \{\xi ^{2} + \frac{\mathit{Bf }^{{\prime}}\delta _{ c}\delta _{x}} {g_{c}g_{x}} \left (\frac{g_{\mathit{cc}}} {\delta _{c}g_{c}} + \frac{g_{\mathit{xx}}} {\delta _{x}g_{x}}\right )\right \} }$$


                    (10.67)
                

 it is necessarily negative in the case of DMI, and hence the local dynamics do not satisfy the saddle-point stability condition in the models of Sects. 2 and 3.2.
In the production economy model of Sect. 3.1, in contrast, the equilibruim dynamics could be saddle-point stable under DMI. By assuming that there exists a non-satiated steady-state equilibrium such that g

                  c
                 > 0 and g

                  x
                 > 0, I focus on the local dynamics around the non-satiated steady-state point.Footnote 33 From the discussions in Appendix A.2.1, I can show easily that the dynamics are saddle-point stable under DMI if and only if 

$$\displaystyle{ \Psi > - \frac{\mathit{Bf }^{{\prime\prime}}} {g_{c}g_{x}^{2}}\left (g_{\mathit{xx}} + B^{2}g_{\mathit{ cc}}\right ) }$$


                    (10.68)
                

 where \(\Psi \) is now negative as seen from (10.67).
With (10.68), in turn, the signs of (10.34) and (10.36) are kept unchanged, and hence the results of comparative statics in Proposition 4 and Corollary 1 hold valid under DMI. That is, the greater preference for quasi-luxury goods leads to more steady-state capital stock. Taxation on quasi-luxury goods from no initial distortion decreases the steady-state capital stock.
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