Skip to main content

Protein Analysis in Large Benthic Foraminifera

  • Chapter
  • First Online:
Book cover Approaches to Study Living Foraminifera

Part of the book series: Environmental Science and Engineering ((ENVSCIENCE))

Abstract

Large benthic foraminifera (LBFs) have long been used as environmental recorders of ocean chemistry. Although the importance of foraminifera in paleo-reconstructions of ancient oceans and as sediment producers is well documented, the biology of tropical symbiont-bearing foraminifera has only recently gained increased attention. Tropical symbiont-bearing LBFs represent a unique and important subset of LBFs in that they are vital to coral-reef ecosystems and host a wide suite of algal symbionts (e.g., dinoflagellates, diatoms, red algae, green algae and cyanobacteria). Previous studies on both host and symbiont physiology have been performed in order to gauge the foraminiferal response to a variety of stressors, including elevated temperature and nutrient levels, as well as acidification. Recently, protocols have been developed for protein analysis in LBFs that will allow for expression analyses of target proteins from both members of the holobiont. In this chapter, we detail a protein expression protocol for one-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (1-D SDS-PAGE) and consequent western blotting for determination of protein expression in the foraminiferal holobiont. This technique has the potential to target proteins that are specific to either host or symbiont compartments, a breakthrough that may ultimately allow for an increased understanding of the molecular-scale regulation of the symbiosis that is vital to these globally important calcifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Doo SS, Mayfield AB, Byrne M, Chen H-K, Nguyen HD, Fan T-Y (2012) Reduced expression of the rate-limiting carbon fixation enzyme RuBisCO in the benthic foraminifer Baculogypsina sphaerulata holobiont in response to heat shock. J Exp Mar Biol Ecol 430–431:63–67

    Article  Google Scholar 

  • Fujita K, Fujimura H (2008) Organic and inorganic carbon production by algal symbiont-bearing foraminifera on northwest Pacific coral-reef flats. J Foramin Res 38:117–126

    Article  Google Scholar 

  • Glas MS, Fabricius KE, De Beer D, Uthicke S (2012) The O2, pH and Ca2+ microenvironment of benthic foraminifera in a high CO2 World. PLoS ONE 7:e50010

    Article  CAS  Google Scholar 

  • Heinz P, Marten RA, Linshy VN, Haap T, Geslin E, Köhler H (2012) 70 kD stress protein (Hsp70) analysis in living shallow-water benthic foraminifera. Mar Biol Res 8:37–41

    Article  Google Scholar 

  • Hikami M, Ushie H, Irie T, Fujita K, Kuroyanagi A, Sakai K, Nojiri Y, Suzuki A, Kawahata H (2011) Contrasting calcification responses to ocean acidification between two reef foraminifers harboring different algal symbionts. Geophys Res Lett 38, L19601

    Article  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Google Scholar 

  • Langer MR (2008) Assessing the contribution of foraminiferan protists to global ocean carbonate production. J Eukaryot Microbiol 55:163–169

    Article  Google Scholar 

  • Lee JJ (2006) Review article algal symbiosis in larger foraminifera. Symbiosis 42:63–75

    Google Scholar 

  • Rink S, Kühl M, Bijma J, Spero HJ (1998) Microsensor studies of photosynthesis and respiration in the symbiotic foraminifer Orbulina universa. Mar Biol 131:583–595

    Article  Google Scholar 

  • Schmidt C, Heinz P, Kucera M, Uthicke S (2011) Temperature-induced stress leads to bleaching in larger benthic foraminifera hosting endosymbiotic diatoms. Limnol Oceanogr 56:1587–1602

    Article  Google Scholar 

  • Sinutok S, Hill R, Doblin MA, Wuhrer R, Ralph PJ (2011) Warmer more acidic conditions cause decreased productivity and calcification in subtropical coral reef sediment-dwelling calcifiers. Limnol Oceanogr 56:1200–1212

    Article  CAS  Google Scholar 

  • Yamamoto S, Kayanne H, Terai M, Watanabe A, Kato K, Negishi A, Nozaki K (2012) Threshold of carbonate saturation state determined by CO2 control experiment. Biogeosciences 9:1441–1450

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve S. Doo .

Editor information

Editors and Affiliations

Appendix 1

Appendix 1

 

Chemical formula

Final concentration

Amount

Manufacturer

RIPA buffer a

1 M Tris–HCl (pH 6.8)

NH2C(CH2OH)3

50 mM

2.5 mL

JT Baker 4099-02

NP-40/Triton X 1 %

C14H22O(C2H4O)n(n=9-10)

1 %

500 μL

Sigma-Aldrich X-100

Sodium-deoxycholate

NaC24H39O4

0.25 %

0.25 g

Thermo Scientific 89904

5M Sodium chloride

NaCl

150 mM

1.5 mL

Sigma-Aldrich 31434

Double-distilled water (ddH2O)

H2O

 

To 50 mL

 

Protease inhibitor

Inhibitor Cocktail

per manufacturer's instruction

Roche Complete Protease Inhibitor Cocktail Tablets 04693116001

  

Total

50 mL

2× SDS-PAGE Laemmli sample buffer b

1M Tris–HCl (pH 6.8)

NH2C(CH2OH)3

125 mM

1.25 mL

JT Baker 4099-02

10 % SDS

NaCH3(CH2)11OSO3

4 % (w/v)

4 mL

JT Baker 4095-02

80 % Glycerol

HOCH2CH(OH)CH2OH

20 % (w/v)

2.5 mL

Sigma-Aldrich 15523

2 mg/mL Bromophenol blue

C19H9Br4NaO5S

0.01 % (w/v)

100 μL

Sigma-Aldrich RD32768

2-Mercaptoethanol

HSCH2CH2OH

5 %

500 μL

Sigma-Aldrich M7154

ddH2O

H2O

To 10 mL

  

Total

10 mL

 

10 % SDS c

10 % Sodium dodecyl sulfate (SDS)

NaCH3(CH2)11OSO3

10 % (w/v)

25 g

JT Baker 4095-02

ddH2O

H2O

 

To 250 mL

 
  

Total

250 mL

 

10× SDS-PAGE running buffer d

 

Tris-base

NH2C(CH2OH)3

0.25 M

30.3 g

JT Baker 4099-02

Glycine

NH2CH2COOH

1.92 M

144.0 g

Sigma-Aldrich G8898

SDS

NaCH3(CH2)11OSO3

33 mM

10.0 g

JT Baker 4095-02

ddH2O

H2O

To 1,000 mL

 
  

Total

1,000 mL

 

1 M Tris–HCl (pH 6.8) e

Tris-base

NH2C(CH2OH)3

1 M

60.57 g

JT Baker 4099-02

12 N HCl

HCl

varies

 

ddH2O

H2O

To 500 mL

 
  

Total

500 mL

 

1.5 M Tris–HCl (pH 8.8) f

Tris-base

NH2C(CH2OH)3

1.5 M

90.86 g

JT Baker 4099-02

12N NaOH

NaOH

varies

 

ddH2O

H2O

To 500 mL

 
  

Total

500 mL

 

10 % APS g

Ammonium persulfate (APS)

(NH4)2S2O8

10 % (w/v)

0.5 g

JT Baker 0762-01

ddH2O

H2O

To 5 mL

 
  

Total

5 mL

 

Bromophenol blue h

Bromophenol blue

C19H9Br4NaO5S

2 mg/mL

10 mg

Sigma-Aldrich RD32768

ddH2O

H2O

To 5 mL

 
  

Total

5 mL

 

Gel Fixation Buffer prior to SYPRO ® Ruby Stain i

Methanol

CH3OH

50 % (v/v)

500 mL

Sigma-Aldrich 34966

Acetic acid

CH3COOH

7 % (v/v)

70 mL

Sigma-Aldrich A6283

ddH2O

H2O

To 1,000 mL

 
  

Total

1,000 mL

 

Destaining buffer for SYPRO ® Ruby Stain

Methanol

CH3OH

10 % (v/v)

100 mL

Sigma-Aldrich 34966

Acetic acid

CH3COOH

7 % (v/v)

70 mL

Sigma-Aldrich A6283

ddH2O

H2O

To 1,000 mL

 
  

Total

1,000 mL

 

5× SDS-PAGE transfer buffer j

Tris-base

NH2C(CH2OH)3

0.123 M

15.0 g

JT Baker 4099-02

Glycine

NH2CH2COOH

0.959 M

72.0 g

Sigma-Aldrich G8898

ddH2O

H2O

Fill to 1,000 mL

  

Total

1,000 mL

 

1× SDS-PAGE transfer buffer k

Methanol

CH3OH

20 % (v/v)

200 mL

Sigma-Aldrich 34966

5× transfer buffer

20 % (v/v)

200 mL

ddH2O

H2O

To 1,000 mL

 
  

Total

1,000 mL

 

10× TBS buffer l

Tris-base

NH2C(CH2OH)3

0.1M

12.11 g

JT Baker 4099-02

Sodium chloride

NaCl

1.5M

87.66 g

Sigma-Aldrich 31434

12N HCl

varies

 

ddH2O

H2O

To 1,000 mL

 
  

Total

1,000 mL

 

1× TBST Buffer m

10× TBS

10 % (v/v)

100 mL

Tween-20

C58H114O26

0.5 % (v/v)

500 μL

Sigma-Aldrich P5927

ddH2O

H2O

To 1,000 mL

  

Total

1,000 mL

 

5 % blocking buffer

1× TBST buffer

10 mL

 

Skim milk

5 % (w/v)

0.5 g

Sigma-Aldrich Fluka 70166

  

Total

10 mL

 
  1. aInstructions: Add the protease inhibitor right before use, as protease inhibitors will degrade upon continual storage in liquid form. Store RIPA lysis buffer at 4 °C
  2. bInstructions: Add all components and keep at −20 °C for use within 3 weeks. Add 2-Mercaptoethanol in a fumehood, and avoid repeated freeze-thaws
  3. cInstructions: Dissolve 25 g SDS in 200 mL ddH2O, then fill to 250 mL
  4. dInstructions: Dissolve Tris-base, glycine and SDS in 900 mL ddH2O, then fill to 1,000 mL. Dilute to 1× with ddH2O before use in gel electrophoresis
  5. eInstructions: Dissolve Tris-base in 400 mL ddH2O, adjust pH to 6.8 with 12 N HCl and fill to 500 mL with ddH2O
  6. fInstructions: Dissolve Tris-base in 400 mL ddH2O, adjust pH to 8.8 with 12N NaOH, and fill to 500 mL with ddH2O
  7. gInstructions: Dissolve APS powder in 5 mL ddH2O. Aliquot into 1.5 mL eppendorff tubes, and store at −20 °C for a maximum of 4 weeks. Avoid repeated freeze-thaws
  8. hInstructions: Dissolve bromophenol blue in 5 mL ddH2O. Aliquot into 1.5 mL eppendorff tubes, and store at −20 °C
  9. iInstructions: Add and mix chemicals in the fume hood. Rapid Protocol: (1) Microwave gel for 30 s, agitate (70 rpm) for 30 s. (2) Microwave gel for 30 s, agitate (70 rpm) for 5 min. (3) Microwave gel for 30 s, agitate (70 rpm) for 25 min. (4) Continue with Step 4 in Sect. 5.3.5
  10. jInstructions: Dissolve Tris-base and glycine in 900 mL ddH2O, then fill to 1,000 mL
  11. kInstructions: Make up beforehand, and store at 4 °C
  12. lInstructions: Dissolve tris-base and sodium chloride in 900 mL ddH2O, adjust pH with 12 N HCl to pH 7.6, and fill to 1,000 mL
  13. mInstructions: Mix TBS, ddH2O and Tween-20, and mix well

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Doo, S.S., Mayfield, A.B., Nguyen, H.D., Chen, HK. (2014). Protein Analysis in Large Benthic Foraminifera. In: Kitazato, H., M. Bernhard, J. (eds) Approaches to Study Living Foraminifera. Environmental Science and Engineering(). Springer, Tokyo. https://doi.org/10.1007/978-4-431-54388-6_5

Download citation

Publish with us

Policies and ethics