Skip to main content

Fabrication of Macroporous SiC and SiC/C Monoliths from Arylene-Bridged Polysilsesquioxanes via Carbothermal Reduction

  • Chapter
  • First Online:
  • 1400 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Macroporous SiC ceramics and SiC/C composites have been successfully prepared from porous arylene-bridged polysilsesquioxane monoliths by the carbothermal reduction. The carbothermal reduction of the arylene-bridged polysilsesquioxane networks were investigated by FT-IR measurement, thermogravimetric analysis, and X-ray diffraction. Since the Si, O, and C atoms are well-distributed at the atomic level in the polysilsesquioxanes, the resultant SiC and SiC/C contained only a few O atoms after the carbothermal reduction, which indicates that the process of purification, such as washing with hydrofluoric acid to remove remaining SiO2, is not necessary. Besides, the well-defined macropores retained through the calcination in both systems. The SiC monoliths obtained from phenylene-bridged polysilsesquioxanes possessed not only macropores but also mesopores with narrow distribution as the interstices of the SiC crystallites, resulting in hierarchical pore structure. On the other hand, SiC/C composites obtained from biphenylene-bridged polysilsesquioxanes possessed large specific surface area and remarkably high porosity of >90 %.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Benaissa M, Werckmann J, Ehret G, Peschiera E, Guille J, Ledoux MJ (1994) Structural studies of active carbon used in the growth of silicon carbide catalyst support. J Mater Sci 29:4700–4707. doi:10.1007/BF00356512

    Article  CAS  Google Scholar 

  2. Keller N, Pham-Huu C, Crouzet C, Ledoux MH, Savin-Poncet S, Nougayrede JB, Bousquet J (1999) Direct oxidation of H2S into S. New catalysts and processes based on SiC support. Catal Today 53:535–542. doi:10.1016/S0920-5861(99)00141-8

    Article  CAS  Google Scholar 

  3. Setiabudi A, Makkee M, Moulijn JA (2003) An optimal NO x assisted abatement of diesel soot in an advanced catalytic filter design. Appl Catal B Environ 42:35–45. doi:10.1016/S0926-3373(02)00213-8

    Article  CAS  Google Scholar 

  4. Ohzawa Y, Hoshino H, Fujikawa M, Nakane K, Sugiyama K (1998) Preparation of high-temperature filter by pressure-pulsed chemical vapour infiltration of SiC into carbonized paper-fibre preforms. J Mater Sci 33:5259–5264. doi:10.1023/A:1004448424084

    Article  CAS  Google Scholar 

  5. Shi YF, Meng Y, Chen D, Cheng S, Chen P, Yang H, Wan YY, Zhao D (2006) Highly ordered mesoporous silicon carbide ceramics with large surface areas and high stability. Adv Funct Mater 16:561–567. doi:10.1002/adfm.200500643

    Article  CAS  Google Scholar 

  6. Lu AH, Schmidt W, Kiefer W, Schüth F (2005) High surface area mesoporous SiC synthesized via nanocasting and carbothermal reduction process. J Mater Sci 40:5091. doi:10.1016/S1387-1811(03)00378-0

    Article  CAS  Google Scholar 

  7. Jin GQ, Guo XY (2003) Synthesis and characterization of mesoporous silicon carbide. Micropor Mesopor Mater 60:207–212. doi:10.1016/S1387-1811(03)00378-0

    Article  CAS  Google Scholar 

  8. Krawiec P, Schrage C, Kockrick E, Kaskel S (2008) Tubular and rodlike ordered mesoporous silicon (oxy)carbide ceramics and their structural transformations. Chem Mater 20:5421–5433. doi:10.1021/cm801035g

    Article  CAS  Google Scholar 

  9. Yan J, Wang A, Kim DP (2006) Preparation of ordered mesoporous SiC from preceramic polymer templated by nanoporous silica. J Phys Chem B 110:5429–5433. doi:10.1021/jp057378+

    Article  CAS  Google Scholar 

  10. Greil P, Lifka T, Kaindl A (1998) Biomorphic cellular silicon carbide ceramics from wood: I. Processing and microstructure. J Eur Ceram Soc 18:1961–1973. doi:10.1016/S0955-2219(98)00155-1

    Article  CAS  Google Scholar 

  11. Qian JM, Qang JP, Qiao GJ, Jin ZH (2004) Preparation of porous SiC ceramic with a woodlike microstructure by sol–gel and carbothermal reduction processing. J Eur Ceram Soc 24:3251–3259. doi:10.1016/j.jeurceramsoc.2003.10.042

    Article  CAS  Google Scholar 

  12. Ota T, Takahashi M, Hibi T, Ozawa M, Suzuki S, Hikichi Y, Suzuki H (1995) Biomimetic process for producing SiC ‘‘wood’’. J Am Ceram Soc 78:3409–3411. doi:10.1111/j.1151-2916.1995.tb07988.x

    Article  CAS  Google Scholar 

  13. Kim YW, Kim SH, Song IH, Kim HD, Park CB (2005) Fabrication of open-cell, microcellular silicon carbide ceramics by carbothermal reduction. J Am Ceram Soc 88:2949–2951. doi:10.1111/j.1551-2916.2005.00509.x

    Article  CAS  Google Scholar 

  14. Eom JH, Kim YW, Song IH, Kim HD (2008) Processing and properties of polysiloxane-derived porous silicon carbide ceramics using hollow microspheres as templates. J Eur Ceram Soc 28:1029–1035. doi:10.1016/j.jeurceramsoc.2007.09.009

    Article  CAS  Google Scholar 

  15. Sonnenurg K, Adelhelm P, Antonietti M, Smarsly B, Nöske R, Strauch P (2006) Synthesis and characterization of SiC materials with hierarchical porosity obtained by replication techniques. Phys Chem Chem Phys 8:3561–3566. doi:10.1039/b604819f

    Article  Google Scholar 

  16. Cheng QM, Interrante LV, Lienhard M, Shen Q, Wu Z (2005) Methylene-bridged carbosilanes and polycarbosilanes as precursors to silicon carbide—from ceramic composites to SiC nanomaterials. J Eur Ceram Soc 25:233–241. doi:10.1016/j.jeurceramsoc.2004.08.005

    Article  CAS  Google Scholar 

  17. Narisawa M, Idesaki A, Kitano S, Okamura K, Sugimoto M, Seguchi T, Itoh M (1999) Use of blended precursors of poly(vinylsilane) in polycarbosilane for silicon carbide fiber synthesis with radiation curing. J Am Ceram Soc 82:1045–1051. doi:10.1111/j.1151-2916.1999.tb01871.x

    Article  CAS  Google Scholar 

  18. Nghiem QD, Kim DP (2008) Direct preparation of high surface area mesoporous SiC-based ceramic by pyrolysis of a self-assembled polycarbosilane-block-polystyrene diblock copolymer. Chem Mater 20:3735–3739. doi:10.1021/cm702688j

    Article  CAS  Google Scholar 

  19. Zeschky J, Höfner T, Arnold C, Weißmann R, Bahloul-Hourlier D, Scheffler M, Greil P (2005) Polysilsesquioxane derived ceramic foams with gradient porosity. Acta Mater 53:927–937. doi:10.1016/j.actamat.2004.10.039

    Article  CAS  Google Scholar 

  20. Sung IK, Christian MM, Kim DP, Kenis PJA (2005) Tailored macroporous SiCN and SiC structures for high-temperature fuel reforming. Adv Funct Mater 15:1336. doi:10.1002/adfm.200500038

    Article  CAS  Google Scholar 

  21. Belot V, Corriu RJP, Leclercq D, Mutin PH, Vioux A (1994) Silicon oxycarbide glasses with low O/Si ratio from organosilicon precursors. J Non-Cryst Solids 176:33–44. doi:10.1016/0022-3093(94)90208-9

    Article  CAS  Google Scholar 

  22. Belot V, Corriu RJP, Leclercq D, Mutin PH, Vioux A (1992) Thermal redistribution reactions in crosslinked polysiloxanes. J Polym Sci A Polym Chem 30:613–623. doi:10.1002/pola.1992.080300413

    Article  CAS  Google Scholar 

  23. Bouillon E, Langlais F, Pailler R, Naslain R, Cruege F, Huong PV, Sarthou JC, Delpuech A, Laffon C, Lagarde P, Monthioux M, Oberlin A (1991) Conversion mechanisms of a polycarbosilane precursor into an SiC-based ceramic material. J Mater Sci 26:1333–1345. doi:10.1007/BF00544474

    Article  CAS  Google Scholar 

  24. Liu Q, Wu HJ, Lewis R, Maciel GE, Interrante LV (1999) Investigation of the pyrolytic conversion of poly(silylenemethylene) to silicon carbide. Chem Mater 11:2038–2048. doi:10.1021/cm981067c

    Article  CAS  Google Scholar 

  25. Raman V, Bhatia G, Sengupta PR, Srivastava AK, Sood KN (2007) Synthesis of silicon carbide nanorods from mixture of polymer and sol–gel silica. J Mater Sci 42:5891–5895. doi:10.1007/s10853-006-1175-4

    Article  CAS  Google Scholar 

  26. Sujirote K, Leangsuwan P (2003) Silicon carbide formation from pretreated rice husks. J Mater Sci 38:4739–4744. doi:10.1023/A:1027475018767

    Article  CAS  Google Scholar 

  27. Christian M, Kenis PJA (2006) Ceramic microreactors for on-site hydrogen production from high temperature steam reforming of propane. Lab Chip 6:1328–1337. doi:10.1039/b607552e

    Article  CAS  Google Scholar 

  28. Amari S, Lewis RS, Anders E (1994) Interstellar grains in meteorites: I. Isolation of SiC, graphite and diamond; size distributions of SiC and graphite. Geochim Cosmochim Acta 58:459–470. doi:10.1016/0016-7037(94)90477-4

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Hasegawa .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Japan

About this chapter

Cite this chapter

Hasegawa, G. (2013). Fabrication of Macroporous SiC and SiC/C Monoliths from Arylene-Bridged Polysilsesquioxanes via Carbothermal Reduction. In: Studies on Porous Monolithic Materials Prepared via Sol–Gel Processes. Springer Theses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54198-1_11

Download citation

Publish with us

Policies and ethics