Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 1446 Accesses

Abstract

Porous materials are attracting more and more attentions in various fields and a lot of efforts have been made to develop the synthesis of porous materials. Since the first report on the synthesis of macroporous silica monoliths by Nakanishi and Soga in 1991, the sol–gel method accompanied by the spinodal decomposition has been developed as one of the most promising synthesis way of porous monolithic materials. However, in spite of the dramatic progress in the synthesis of porous silica monoliths, the fabrication of porous monoliths based on the materials other than silica and their derivatives is still hard to be achieved. In the present thesis, further development of the technique consisting of the sol–gel method and phase separation has been achieved with organic, inorganic, and organic–inorganic hybrid materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koshida N, Koyama H (1992) Visible electroluminescence from porous silicon. Appl Phys Lett 60:347–349. doi:org/10.1063/1.106652

    Article  CAS  Google Scholar 

  2. Lakshmi BB, Patrissi CJ, Martin CR (1997) Sol–gel template synthesis of semiconductor oxide micro- and nanostructures. Chem Mater 9:2544–2550. doi:10.1021/cm970268y

    Article  CAS  Google Scholar 

  3. Huang SY, Schlichthörl G, Nozik AJ, Grätzel M, Frank AJ (1997) Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells. J Phys Chem B 101:2576–2582. doi:10.1021/jp962377q

    Article  CAS  Google Scholar 

  4. Yi JS, Nguyen TV (1999) Multicomponent transport in porous electrodes of proton exchange membrane fuel cells using the interdigitated gas distributors. J Electrochem Soc 146:38–45. doi:10.1149/1.1391880

    Article  CAS  Google Scholar 

  5. Shin HC, Liu M (2005) Three-dimensional porous copper-tin alloy electrodes for rechargeable lithium batteries. Adv Funct Mater 15:582–586. doi:10.1002/adfm.200305165

    Article  CAS  Google Scholar 

  6. Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in super capacitor. J Power Sour 157:11–27. doi:10.1016/j.jpowsour.2006.02.065

    Article  CAS  Google Scholar 

  7. Cheng CD, Silvestri AJ (1977) The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts. J Catal 47:249–259. doi:10.1016/0021-9517(77)90172-5

    Article  Google Scholar 

  8. Yu JS, Kang S, Yoon SB, Chai G (2002) Fabrication of ordered uniform porous carbon networks and their application to a catalyst supporter. J Am Chem Soc 124:9382–9383. doi:10.1021/ja0203972

    Article  CAS  Google Scholar 

  9. Harmer MA, Farneth WE, Sun Q (1996) High surface area nafion resin/silica nanocomposites: a new class of solid acid catalyst. J Am Chem Soc 118:7708–7715. doi:10.1021/ja9541950

    Article  CAS  Google Scholar 

  10. Lin VSY, Motesharei K, Dancil KPS, Sailor MJ, Ghadiri MR (1997) A porous silicon-based optical interferometric biosensor. Science 278:840–843. doi:10.1126/science.278.5339.840

    Article  CAS  Google Scholar 

  11. Dillon AC, Jones KM, Bekkedahl TA, Klang CH, Bethune DS, Heben MJ (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386:377–379. doi:10.1038/386377a0

    Article  CAS  Google Scholar 

  12. Noro S, Kitagawa S, Kondo M, Seki K (2000) A new, methane adsorbent, porous coordination polymer [{CuSiF6(4,4′-bipyridine)2} n ]. Angew Chem Int Ed 39:2082–2084. doi:10.1002/1521-3773(20000616)39:12<2081:AID-ANIE2081>3.0.CO;2-A

    Article  CAS  Google Scholar 

  13. Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O’Keeffe M, Yaghi OM (2002) Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295:469–472. doi:10.1126/science.1067208

    Article  CAS  Google Scholar 

  14. Hench LL (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74:1487–1510. doi:10.1111/j.1151-2916.1991.tb07132.x

    Article  CAS  Google Scholar 

  15. Davis ME (2002) Ordered porous materials for emerging applications. Nature 417:813–821. doi:10.1038/nature00785

    Article  CAS  Google Scholar 

  16. Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4:518–524. doi:10.1038/nmat1421

    Article  CAS  Google Scholar 

  17. Hollis OL (1966) Separation of gaseous mixtures using porous polyaromatic polymer beads. Anal Chem 38:309–316. doi:10.1021/ac60234a038

    Article  CAS  Google Scholar 

  18. Gusev I, Huang X, Horváth C (1999) Capillary columns with in situ formed porous monolithic packing for micro high-performance liquid chromatography and capillary electrochromatography. J Chromatogr A 855:273–290. doi:10.1016/S0021-9673(99)00697-4

    Article  CAS  Google Scholar 

  19. Seo JS, Whang D, Lee HY, Jun SI, Oh J, Jeon YJ, Kim K (2000) A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature 404:982–986. doi:10.1038/35010088

    Article  CAS  Google Scholar 

  20. Tanaka N, Kobayashi H, Ishizuka N, Minakuchi H, Nakanishi K, Hosoya K, Ikegami T (2002) Monolithic silica columns for high-efficiency chromatographic separations. J Chromatogr A 965:35–49. doi:10.1016/S0021-9673(01)01582-5

    Article  CAS  Google Scholar 

  21. Li JR, Kuppler RJ, Zhou HC (2009) Selective gas adsorption and separation in metal–organic frameworks. Chem Soc Rev 38:1477–1504. doi:10.1039/b802426j

    Article  CAS  Google Scholar 

  22. Svec F, Fréchet JMJ (1996) New designs of macroporous polymers and supports: from separation to biocatalysis. Science 273:205–211. doi:10.1126/science.273.5272.205

    Article  CAS  Google Scholar 

  23. Thomas A, Goettmann F, Antonietti M (2008) Hard templates for soft materials: creating nanostructured organic materials. Chem Mater 20:738–755. doi:10.1021/cm702126j

    Article  CAS  Google Scholar 

  24. Wan Y, Shi Y, Zhao D (2008) Supramolecular aggregates as templates: ordered mesoporous polymers and carbons. Chem Mater 20:932–945. doi:10.1021/cm7024125

    Article  CAS  Google Scholar 

  25. Velev OD, Kaler EW (2000) Structured porous materials via colloidal crystal templating: from inorganic oxides to metals. Adv Mater 12:531–534. doi:10.1002/(SICI)1521-4095(200004)12:7<531:AID-ADMA531>3.0.CO;2-S

    Article  CAS  Google Scholar 

  26. Holland BT, Blanford CF, Stein A (1998) Synthesis of macroporus minerals with highly ordered three-dimensional arrays of spheroidal voids. Science 281:538–540. doi:10.1126/science.281.5376.538

    Article  CAS  Google Scholar 

  27. Stein A, Melde BJ, Schroden RC (2000) Hybrid inorganic-organic mesoporous silicates: nanoscopic reactors coming of age. Adv Mater 12:1403–1419. doi:10.1002/1521-4095(200010)12:19<1403:AID-ADMA1403>3.3.CO;2-O

    Article  CAS  Google Scholar 

  28. Fujita S, Inagaki S (2008) Self-organization of organosilica solids with molecular-scale and mesoscale periodicities. Chem Mater 20:891–908. doi:10.1021/cm702271v

    Article  CAS  Google Scholar 

  29. Rowsell JLC, Yaghi OM (2004) Metal–organic frameworks: a new class of porous materials. Micropor Mesopor Mater 73:3–14. doi:10.1016/j.micromeso.2004.03.034

    Article  CAS  Google Scholar 

  30. Kitagawa S, Kitaura R, Noro S (2004) Functional porous coordination polymers. Angew Chem Int Ed 43:2334–2375. doi:10.1002/anie.200300610

    Article  CAS  Google Scholar 

  31. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquérol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems: with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619. doi:10.1351/pac198557040603

    Article  CAS  Google Scholar 

  32. Breck DW, Eversole WG, Milton RM, Reed TB, Thomas TL (1956) Crystalline zeolites. I. The properties of a new synthetic zeolite, type A. J Am Chem Soc 78:5963–5972. doi:10.1021/ja01604a001

    Article  CAS  Google Scholar 

  33. Pollitt KR, Robb JC, Thomas DW (1978) Structure of synthetic zeolite ZSM-5. Nature 272:437–438. doi:10.1038/272437a0

    Article  Google Scholar 

  34. Figueiredo JL, Pereira MFR, Freitas MMA, Órfão JJM (1999) Modification of the surface chemistry of activated carbons. Carbon 37:1379–1389. doi:10.1016/S0008-6223(98)00333-9

    Article  CAS  Google Scholar 

  35. Kyotani T (2000) Control of pore structure in carbon. Carbon 38:269–286. doi:10.1016/S0008-6223(99)00142-6

    Article  CAS  Google Scholar 

  36. Rao CNR, Cheetham AK, Thirumurugan A (2008) Hybrid inorganic-organic materials: a new family in condensed matter physics. J Phys Condens Matter 20:1–21. doi:10.1088/0953-8984/20/8/083202

    Google Scholar 

  37. Barton TJ, Bull LM, Klemperer WG, Loy DA, McEnanery B, Misono M, Monson PA, Pez G, Scherer GW, Vartuli JC, Yaghi OM (1999) Tailored porous materials. Chem Mater 11:2633–2656. doi:10.1021/cm9805929

    Article  CAS  Google Scholar 

  38. Yanagisawa T, Shimizu T, Kuroda K, Kato C (1990) The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials. Bull Chem Soc Jpn 63:988–992. doi:10.1246/bcsj.63.988

    Article  CAS  Google Scholar 

  39. Ryoo R, Joo SH, Jun S (1999) Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J Phys Chem B 103:7743–7746. doi:10.1021/jp991673a

    Article  CAS  Google Scholar 

  40. Ciesla U, Schüth F (1999) Ordered mesoporous materials. Micropor mesopor mater 27:131–149. doi:10.1016/S1387-1811(98)00249-2

    Article  CAS  Google Scholar 

  41. Raman NK, Anderson MT, Brinker CJ (1996) Template-based approaches to the preparation of amorphous, nanoporous silicas. Chem Mater 8:1682–1701. doi:10.1021/cm960138+

    Article  CAS  Google Scholar 

  42. Holland BT, Blanford CF, Do T, Stein A (1999) Synthesis of highly ordered three-dimensional, macroporous structures of amorphous or crystalline inorganic Oxides, Phosphates, and Hybrid composites. Chem Mater 11:795–805. doi:10.1021/cm980666g

    Article  CAS  Google Scholar 

  43. Imhof A, Pine DJ (1997) Ordered macroporous materials by emulsion templating. Nature 389:948–951. doi:10.1038/40105

    Article  CAS  Google Scholar 

  44. Zhang H, Cooper AI (2005) Synthesis and applications of emulsion-templated porous materials. Soft Matter 1:107–113. doi:10.1039/b502551f

    Article  CAS  Google Scholar 

  45. Cheng F, Tao Z, Liang J, Chen J (2008) Template-directed materials for rechargeable lithium-ion batteries. Chem Mater 20:667–681. doi:10.1021/cm702091q

    Article  CAS  Google Scholar 

  46. Ma Y, Tong W, Zhou H, Suib SL (2000) A review of zeolite-like porous materials. Micropor Mesopor Mater 37:243–252. doi:10.1016/S1387-1811(99)00199-7

    Article  CAS  Google Scholar 

  47. Pérez-Ramírez J, Christensen CH, Egeblad K, Christensen CH, Groen JC (2008) Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chem Soc Rev 37:2530–2542. doi:10.1039/b809030k

    Article  Google Scholar 

  48. Polarz S, Antonietti M (2002) Porous materials via nanocasting procedures: innovative materials and learning about soft-matter organization. Chem Commun 22:2593–2604. doi:10.1039/b205708p

    Article  Google Scholar 

  49. Yuan ZY, Su BL (2006) Insights into hierarchically meso–macroporous structured materials. J Mater Chem 16:663–677. doi:10.1039/b512304f

    Article  CAS  Google Scholar 

  50. Stein A, Li F, Denny NR (2008) Morphological control in colloidal crystal templating of inverse Opals hierarchical structures, and shaped particles. Chem Mater 20:649–666. doi:10.1021/cm702107n

    Article  CAS  Google Scholar 

  51. Lee J, Kim J, Hyeon T (2006) Recent progress in the synthesis of porous carbon materials. Adv Mater 18:2073–2094. doi:10.1002/adma.200501576

    Article  CAS  Google Scholar 

  52. Zhao XS, Su F, Yan Q, Guo W, Bao XY, Lv L, Zhou Z (2006) Templating methods for preparation of porous structures. J Mater Chem 196:637–648. doi:10.1039/b513060c

    Article  Google Scholar 

  53. Pajonk GM (1991) Aerogel catalysts. Appl Catal 72:217–266. doi:10.1016/0166-9834(91)85054-Y

    Article  CAS  Google Scholar 

  54. Fricke J, Emmerling A (1992) Aerogels. J Am Ceram Soc 75:2027–2036. doi:10.1111/j.1151-2916.1992.tb04461.x

    Article  CAS  Google Scholar 

  55. Kanamori K, Aizawa M, Nakanishi K, Hanada T (2007) New transparent methylsilsesquioxane aerogels and xerogels with improved mechanical properties. Adv Mater 19:1589–1593. doi:10.1002/adma.200602457

    Article  CAS  Google Scholar 

  56. Nakanishi K, Soga N (1991) Phase separation in gelling silica-organic polymer solution: systems containing poly(sodium styrenesulfonate). J Am Ceram Soc 74:2518–2530. doi:10.1111/j.1151-2916.1991.tb06794.x

    Article  CAS  Google Scholar 

  57. Flory PJ (1942) Thermodynamics of high polymer solutions. J Chem Phys 10:51–61. doi:10.1063/1.1723621

    Article  CAS  Google Scholar 

  58. Huggins ML (1942) Theory of solutions of high polymers. J Am Chem Soc 64:1712–1719. doi:10.1021/ja01259a068

    Article  CAS  Google Scholar 

  59. Huggins ML (1942) Some properties of solutions of long-chain compounds. J Phys Chem 46:151–158. doi:10.1021/j150415a018

    Article  CAS  Google Scholar 

  60. Hasegawa H, Tanaka H, Yamasaki K, Hashimoto T (1987) Bicontinuous microdomain morphology of block copolymers. tetrapod-network structure of polystyrene-polyisoprene diblock copolymers. Macromolecules 20:1651–1662. doi:10.1021/ma00173a036

    Article  CAS  Google Scholar 

  61. Hashimoto T, Itakura M, Hasegawa H (1986) Late stage spinodal decomposition of a binary polymer mixture. I critical test of dynamical scaling on scattering function. J Chem Phys 85:6118–6128. doi:10.1063/1.451477

    Article  CAS  Google Scholar 

  62. Nakanishi K, Komura H, Takahashi R, Soga N (1994) Phase separation in silica sol–gel system containing poly(ethylene oxide). I phase relation and gel morphology. Bull Chem Soc Jpn 67:1327–1335. doi:10.1246/bcsj.67.1327

    Article  CAS  Google Scholar 

  63. Morisato K, Miyazaki S, Ohira M, Furuno M, Nyudo M, Terashima H, Nakanishi K (2009) Semi-micro-monolithic columns using macroporous silica rods with improved performance. J Chromatogr A 1216:7384–7387. doi:10.1016/j.chroma.2009.05.028

    Article  CAS  Google Scholar 

  64. Kawamoto K, Nakanishi K, Hanada T (2007) Phase separation in alkoxy-derived silica system containing polyacrylamide. Mater Res Soc Symp Proc 1007:S04–01

    Article  Google Scholar 

  65. Sato Y, Nakanishi K, Hirao K, Jinnai H, Shibayama M, Melnichenko YB, Wignall GD (2001) Formation of ordered macropores and templated nanopores in silica sol–gel system incorporated with EO–PO–EO triblock copolymer. Colloids Surf A 187:117–122. doi:10.1016/S0927-7757(01)00626-4

    Article  Google Scholar 

  66. Nakanishi K, Amatani T, Yano S, Kodaira T (2008) Multiscale templating of siloxane gels via polymerization-induced phase separation. Chem Mater 20:1108–1115. doi:10.1021/cm702486b

    Article  CAS  Google Scholar 

  67. Nakanishi K, Sato Y, Ruyat Y, Hirao K (2003) Supramolecular templating of mesopores in phase-separating silica sol–gels incorporated with cationic surfactant. J Sol-Gel Sci Technol 26:567–570. doi:10.1023/A:1020767820079

    Article  CAS  Google Scholar 

  68. Matsui T, Nakanishi K, Kanamori K, Hanada T (2008) Phase separation in silica sol-gel system containing anionic surfactant. Mater Res Soc Symp Proc 1056:HH11-60

    Google Scholar 

  69. Nakanishi K, Kanamori K (2005) Organic–inorganic hybrid poly(silsesquioxane) monoliths with controlled macro- and mesopores J Mater Chem 15:3776-3786. doi: 10.1039/b508415f

    Google Scholar 

  70. Huesing N, Raab C, Torma V, Roig A, Peterlik H (2003) Periodically mesostructured silica monoliths from diol-modified silanes. Chem Mater 15:2690–2692. doi:10.1021/cm034036c

    Article  CAS  Google Scholar 

  71. Amatani T, Nakanishi K, Hirao K, Kodaira T (2005) Monolithic periodic mesoporous silica with well-defined macropores. Chem Mater 17:2114–2119. doi:10.1021/cm048091c

    Article  CAS  Google Scholar 

  72. Nakanishi K, Kobayashi Y, Amatani T, Hirao K, Kodaira T (2004) Spontaneous formation of hierarchical macro-mesoporous ethane-silica monolith. Chem Mater 16:3652–3658. doi:10.1021/cm049320y

    Article  CAS  Google Scholar 

  73. Brandhuber D, Torma V, Raab C, Peterlik H, Kulak A, Hüsing N (2005) Glycol-modified silanes in the synthesis of mesoscopically organized silica monoliths with hierarchical porosity. Chem Mater 17:4262–4271. doi:10.1021/cm048483j

    Article  CAS  Google Scholar 

  74. Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press, Inc, New York

    Google Scholar 

  75. Peters EC, Svec F, Fréchet JMJ (1999) Rigid macroporous polymer monoliths. Adv Mater 11:1169–1181. doi:10.1002/(SICI)1521-4095(199910)11:14<1169:AID-ADMA1169>3.0.CO;2-6

    Article  CAS  Google Scholar 

  76. Antonietti M, Caruso RA, Göltner CG, Weissenberger MC (1999) Morphology variation of porous polymer gels by polymerization in lyotropic surfactant phases. Macromolecules 32:1383–1389. doi:10.1021/ma9812478

    Article  CAS  Google Scholar 

  77. Taguchi A, Smått JH, Lindén M (2003) Carbon monoliths possessing a hierarchical, fully interconnected porosity. Adv Mater 15:1211. doi:10.1002/adma.200304848

    Article  Google Scholar 

  78. Smått JH, Weidenthaler C, Rosenholm JB, Lindén M (2006) Hierarchically porous metal oxide monoliths prepared by the nanocasting route. Chem Mater 18:1443–1450. doi:10.1021/cm051880p

    Article  Google Scholar 

  79. Deng Y, Liu C, Yu T, Liu F, Zhang F, Wan Y, Zhang L, Wang C, Tu B, Webley PA, Wang H, Zhao D (2007) Facile synthesis of hierarchically porous carbons from dual colloidal crystal/block copolymer template approach. Chem Mater 19:3271–3277. doi:10.1021/cm070600y

    Article  CAS  Google Scholar 

  80. Konishi J, Fujita K, Nakanishi K, Hirao K (2006) Monolithic TiO2 with controlled multiscale porosity via a template-free sol-gel process accompanied by phase separation. Chem Mater 18:6069–6074. doi:10.1021/cm0617485

    Article  CAS  Google Scholar 

  81. Konishi J, Fujita K, Nakanishi K, Hirao K (2008) Crystalline ZrO2 monoliths with well-defined macropores and mesostructured skeletons prepared by combining the alkoxy-derived sol–gel process accompanied by phase separation and the solvothermal process Chem Mater 20:2165–2173 doi: 10.1021/cm703351d

    Google Scholar 

  82. Tokudome Y, Fujita K, Nakanishi K, Miura K, Hirao K (2007) Synthesis of monolithic Al2O3 with well-defined macropores and mesostructured skeletons via the sol-gel process accompanied by phase separation. Chem Mater 19:3393–3398. doi:10.1021/cm063051p

    Article  CAS  Google Scholar 

  83. Tokudome Y, Fujita K, Nakanishi K, Kanamori K, Miura K, Hirao K, Hanada T (2007) Sol–gel synthesis of macroporous YAG from ionic precursors via phase separation route. J Ceram Soc Jpn 115:925–928

    Article  CAS  Google Scholar 

  84. Fujita K, Tokudome Y, Nakanishi K, Miura K, Hirao K (2008) Cr3+-doped macroporous Al2O3 monoliths prepared by the metal-salt-derived sol–gel method. J Non-Cryst Solids 354:659–664. doi:10.1016/j.jnoncrysol.2007.06.091

    Article  CAS  Google Scholar 

  85. Kanamori K, Nakanishi K, Hanada T (2006) Rigid macroporous poly(divinylbenzene) monoliths with a well-defined bicontinuous morphology prepared by living radical polymerization. Adv Mater 18:2407–2411. doi:10.1002/adma.200601026

    Article  CAS  Google Scholar 

  86. Yamago S, Iida K, Yoshida J (2002) Organotellurium compounds as novel initiators for controlled/living radical polymerizations. Synthesis of functionalized polystyrenes and end-group modifications. J Am Chem Soc 124:2874–2875. doi:10.1021/ja025554b

    Article  CAS  Google Scholar 

  87. Horváth G, Kawazoe K (1983) Method for calculation of effective pore-size distribution in molecular-sieve carbon. J Chem Eng Jpn 16:470–475. doi:10.1252/jcej.16.470

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Hasegawa .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Japan

About this chapter

Cite this chapter

Hasegawa, G. (2013). General Introduction. In: Studies on Porous Monolithic Materials Prepared via Sol–Gel Processes. Springer Theses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54198-1_1

Download citation

Publish with us

Policies and ethics