Skip to main content

Identification of Signaling Pathways That Mediate Dietary Restriction-Induced Longevity in Caenorhabditis elegans

  • Conference paper
  • First Online:
  • 1245 Accesses

Abstract

Aging is a complex process of accumulation of molecular, cellular, and organ damage leading to loss of function and increased vulnerability to disease and death. Despite the complexity of aging, progress has been made in not only understanding molecular mechanisms that regulate aging but also devising interventions which extend lifespan. Recent work has shown that a reduction in food intake without causing malnutrition, dietary restriction (DR), can increase the healthy lifespan of laboratory model organisms, including yeasts, flies, worms, fish, rodents, and rhesus monkeys. DR has also been shown to protect rodents and rhesus monkeys from age-related disorders, and it reduces risk factors for diabetes, cardiovascular disease, and cancers in humans [1, 2]. In mammals, two types of DR regimens, chronic calorie restriction (CR) and intermittent fasting (IF), have proven effective in increasing lifespan and disease resistance [3, 4]. In CR, there is actually a net decrease in calorie intake. In contrast, IF, in which animals are subjected to fasting intermittently, can extend lifespan without a net decrease in total calorie intake. However, an IF regimen has not been established in invertebrate model organisms. Moreover, because it seemed that both CR and IF regimens extend lifespan through a common mechanism, the two regimens have not been strictly distinguished.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Anderson RM, Shanmuganayagam D, Weindruch R (2009) Caloric restriction and aging: studies in mice and monkeys. Toxicol Pathol 37:47–51

    Article  PubMed  Google Scholar 

  2. Fontana L, Klein S (2007) Aging, adiposity, and calorie restriction. JAMA 297:986–994

    Article  PubMed  CAS  Google Scholar 

  3. Martin B, Mattson MP, Maudsley S (2006) Caloric restriction and intermittent fasting: two potential diet for successful brain aging. Ageing Res Rev 5:332–335

    Article  PubMed  CAS  Google Scholar 

  4. Mattson MP, Wan R (2005) Beneficial effects of intermittent fasting and caloric restriction on the cardiovascular and cerebrovascular systems. J Nutr Biochem 16:129–137

    Article  PubMed  CAS  Google Scholar 

  5. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Pistell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Ramaswamy S, Fishbein KW, Spencer RG, Lakatta EG, Le Couteur D, Shaw RJ, Navas P, Puigserver P, Ingram DK, de Cabo R, Sinclair DA (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature (Lond) 444:337–342

    Article  CAS  Google Scholar 

  6. Blagosklonny MV (2010) Calorie restriction: decelerating mTOR-driven aging from cell to organisms (including humans). Cell Cycle 15:683–688

    Article  Google Scholar 

  7. Chen D, Guarente L (2007) SIR2: a potential target for calorie restriction mimetics. Trends Mol Med 13:64–71

    Article  PubMed  CAS  Google Scholar 

  8. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang Li-Li, Scherer B, Sinclair DA (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiaelifespan. Nature (Lond) 425:191–196

    Article  CAS  Google Scholar 

  9. Kapahi P, Chen D, Rogers AN, Katewa SD, Li PW, Thomas EL, Kockel L (2010) With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab 11:453–465

    Article  PubMed  CAS  Google Scholar 

  10. Milne JC, Lambert PD, Schenk S, Carney DP, Smith JJ, Gagne DJ, Jin L, Boss O, Perni RB, Vu CB, Bemis JE, Xie R, Disch JS, Ng PY, Nunes JJ, Lynch AV, Yang H, Galonek H, Israelian K, Choy W, Iffland A, Lavu S, Medvedik O, Sinclair DA, Olefsky JM, Jirousek MR, Elliott PJ, Westphal CH (2007) Small molecule activators of SIRT1 as a therapeutics for the treatment of type 2 diabetes. Nature (Lond) 450:712–716

    Article  CAS  Google Scholar 

  11. Stanfel MN, Shamie LS, Kaeberlein M, Kennedy BK (2009) The TOR pathway comes of age. Biochim Biophys Acta 1784:116–132

    Google Scholar 

  12. Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, Sinclair D (2004) Sirtuin activators mimic calorie restriction and delay ageing in metazoans. Nature (Lond) 430:686–689

    Article  CAS  Google Scholar 

  13. Hands SL, Proud CG, Wyttenbach A (2009) mTOR’s role in ageing: protein synthesis or autophagy? Aging 20:586–597

    Google Scholar 

  14. Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18:1926–1945

    Article  PubMed  CAS  Google Scholar 

  15. Salminen A, Kaarniranta K (2009) Regulation of the aging process by autophagy. Trends Mol Med 15:217–224

    Article  PubMed  CAS  Google Scholar 

  16. Tokunaga C, Yoshino K, Yonezawa K (2004) mTOR integrates amino acid- and energy-sensing pathways. Biochem Biophys Res Commun 313:443–446

    Article  PubMed  CAS  Google Scholar 

  17. Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Muller F (2003) Genetics: influence of TOR kinase on lifespan in C. elegans. Nature (Lond) 436:620

    Article  Google Scholar 

  18. Jia K, Chen D, Riddle DL (2004) The TOR pathway interacts with insulin signaling pathway to regulate C. elegansdevelopment, metabolism and lifespan. Development (Camb) 131:3897–3906

    Article  CAS  Google Scholar 

  19. Greer EL, Dowlatshahi D, Banko MR, Villen J, Hoang K, Blanchard D, Gygi SP, Brunet A (2007) An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr Biol 17:1646–1656

    Article  PubMed  CAS  Google Scholar 

  20. Bishop NA, Guarente L (2007) Two neurons mediate diet-restriction-induced longevity in C. elegans. Nature (Lond) 447:545–549

    Article  CAS  Google Scholar 

  21. Panowski SH, Wolff S, Aguilaniu H, Durieux J, Dillin A (2007) PHA-4/Foxa mediates diet-restriction-induced longevity in C. elegans. Nature (Lond) 447:550–555

    Article  CAS  Google Scholar 

  22. Lakowski B, Hekimi S (1998) The genetics of caloric restriction in Caenorhabditis elegans. Proc Natl Acad Sci USA 95:13091–13096

    Article  PubMed  CAS  Google Scholar 

  23. Kaeberlein TL, Smith ED, Tsuchiya M, Welton KL, Thomas JH, Field S, Kennedy BK, Kaeberlein M (2006) Lifespan extension in Caenorhabditis elegansby complete removal of food. Aging Cell 5:487–494

    Article  PubMed  CAS  Google Scholar 

  24. Lee GD, Wilson MA, Zhu M, Wolkow CA, De Cabo CR, Ingram DK, Zou S (2006) Dietary deprivation extends lifespan in Caenorhabditis elegans. Aging Cell 5:515–524

    Article  PubMed  CAS  Google Scholar 

  25. Honjoh S, Yamamoto T, Uno M, Nishida E (2009) Signalling through RHEB-1 mediates intermittent fasting-induced longevity in C. elegans. Nature (Lond) 457:726–730

    Article  CAS  Google Scholar 

  26. Kenyon CJ (2010) The genetics of ageing. Nature (Lond) 464:504–512

    Article  CAS  Google Scholar 

  27. Goodrick CL, Ingram DK, Reynolds MA, Freeman JR, Cider N (1990) Effects of intermittent feeding upon body weight and lifespan in inbred mice: interaction of genotype and age. Mech Ageing Dev 55:69–87

    Article  PubMed  CAS  Google Scholar 

  28. Anson RM, Guo Z, de Cabo R, Iyun T, Rios M, Hagepanos A, Ingram DK, Lane MA, Mattson MP (2003) Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake. Proc Natl Acad Sci USA 100:6216–6220

    Article  PubMed  CAS  Google Scholar 

  29. Contestabile A, Ciani E (2004) Dietary restriction differentially protects from neurodegeneration in animal models of excitotoxicity. Brain Res 1002:162–166

    Article  PubMed  CAS  Google Scholar 

  30. Mattson MP (2005) Energy intake, meal frequency, and health: a neurobiological perspective. Annu Rev Nutr 25:237–260

    Article  PubMed  CAS  Google Scholar 

  31. Ahmet I, Wan R, Mattson MP, Lakatta EG, Talan M (2005) Cardioprotection by intermittent fasting in rats. Circulation 112:3115–3121

    Article  PubMed  Google Scholar 

  32. Descamps O, Riondel J, Ducros V, Roussel AM (2005) Mitochondrial production of reactive oxygen species and incidence of age-associated lymphoma in OF1 mice: effect of alternate-day fasting. Mech Ageing Dev 126:1185–1191

    Article  PubMed  CAS  Google Scholar 

  33. Pan KZ, Palter JE, Rogers AN, Olsen A, Chen D, Lithgow GJ, Kapahi P (2007) Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans. Aging Cell 6:111–119

    Article  PubMed  CAS  Google Scholar 

  34. Syntichaki P, Troulinaki K, Tavernarakis N (2007) eIF4E function in somatic cells modulates ageing in Caenorhabditis elegans. Nature (Lond) 445:922–926

    Article  CAS  Google Scholar 

  35. Henderson ST, Johnson TE (2001) daf-16integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans. Curr Biol 11:1975–1980

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eisuke Nishida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer

About this paper

Cite this paper

Uno, M., Honjoh, S., Nishida, E. (2012). Identification of Signaling Pathways That Mediate Dietary Restriction-Induced Longevity in Caenorhabditis elegans . In: Shibasaki, M., Iino, M., Osada, H. (eds) Chembiomolecular Science. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54038-0_13

Download citation

Publish with us

Policies and ethics