Skip to main content

Computational Statistics Solutions for Molecular Biomedical Research: A Challenge and Chance for Both

  • Conference paper
  • First Online:
Proceedings of COMPSTAT'2010
  • 5865 Accesses

Abstract

Computational statistics, supported by computing power and availability of efficient methodology, techniques and algorithms on the statistical side and by the perception on the need of valid data analysis and data interpretation on the biomedical side, has invaded in a very short time many cutting edge research areas of molecular biomedicine. Two salient cutting edge biomedical research questions demonstrate the increasing role and decisive impact of computational statistics. The role of well designed and well communicated simulation studies is emphasized and computational statistics is put into the framework of the International Association of Statistical Computing (IASC) and special issues on Computational Statistics within Clinical Research launched by the journal Computational Statistics and Data Analysis (CSDA).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • BENJAMINI, Y. and HOCHBERG, Y. (1995): Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B 57, 289-300.

    MathSciNet  MATH  Google Scholar 

  • BENNER, A., ZUCKNICK, M., HIELSCHER, T., ITTRICH, C. and MANSMANN, U.(2010): High-dimensional Cox models: the choice of penalty as part of the model building process. Biometrical Journal 52, 50-69.

    Article  MathSciNet  MATH  Google Scholar 

  • BINDER, H. and SCHUMACHER, M. (2008): Adapting Prediction Error Estimates for Biased Complexity Selection in High-Dimensional Bootstrap Samples. Statistical Applications in Genetics and Molecular Biology 7 (1) Article 12. DOI: 10.2202/1544-6115.1346

    Google Scholar 

  • BOULESTEIX, A.L., STROBL, C., AUGUSTIN, T., DAUMER, M. (2008): Evaluating microarray-based classifiers: An overview. Cancer Informatics 6, 77-97.

    Google Scholar 

  • BOVEHSAD, H.M., NYGARD, M., STORVOLD, S., ALDRIN, H.L.L., BORGAN, O., FRIGESSI, A. and LINGGIAERDE, O.C.C. (2007): Predicting survival from microarray data - a comparative study. Bioinformatics, 23(16), 2080-2087

    Article  Google Scholar 

  • BRETZ, F., KOENIG, F., BRANNATH, W, GLIMM,E. and POSCH, M. (2009: Tutorial in biostatistics: Adaptive designs for confirmatory clinical trials, Statistics in Medicine 28, 1181-1217.

    Article  MathSciNet  Google Scholar 

  • CHAMBERS, J. (1999): Computing with data: concepts and challenges. The American Statistician 53, 73-84.

    Article  Google Scholar 

  • DICKHAUS, T., BLANCHARD, G., HACK, N., KONIETSCHKE, F., ROHMEYER, K., ROSENBLATT, J., SCHEER, M. and WERFT, W. (2010): μTOSS - Multiple hypotheses testing in an open software system. 2nd Joint Statistical Meeting DAGSTAT Statistics under one Umbrella March 23-26, 2010, Technical University, Dortmund, p 77 (abstract).

    Google Scholar 

  • DUDOIT, S, and Van DER LAAN, M. (2007) Multiple Testing Procedures with Applications to Genomic. Springer, New York

    Google Scholar 

  • EDLER, L. (2005): Computational Statistics und Biometrie. Wer treibt wen? GMDS Medizinische Informatik, Biometrie und Epidemiologie 1 (2) doi10 -(20050620), 2005.

    Google Scholar 

  • EDLER, L, WAHRENDORF, J. and BERGER, J. (1980): SURVIVAL. A program package for the statistical analysis of censored survival times. Statistical Software Newsletter 6, 44-53

    Google Scholar 

  • FINNEY, D.J. (1974): Problems, data, and Inference (with discussion). Journal of the Royal Statistical Society Series A 137, 1-22.

    Article  Google Scholar 

  • FISHER R.A. (1925): Statistical Methods for Research Workers. Oliver & Boyd, Edinburgh.

    Google Scholar 

  • FREIDLIN, B,, MCSHANE, L. and KORN, E.L.(2010): Randomized Clinical Trials With Biomarkers: Design Issues. Journal National Cancer Institute 102, 152-160

    Article  Google Scholar 

  • KAUFMANN, M., PUSZTAI, L., RODY, A., CARDOSO, F., DIETEL, M., EDLER, l., HAHN, M., JONAT, W., KARN T., KREIPE. H., LOI, S., VON MINCKWITZ, G., SINN, H.P. and VAN DE VIJVER (2010/11): Use of standard markers and incorporation of molecular markers into breast cancer therapy (to appear).

    Google Scholar 

  • LAURO, N.C. (1996): Computational statistics or statistical computing, is that the question? Computational Statistics and Data Analysis 23, 191-193.

    Article  Google Scholar 

  • L€UTER, J. (1981): Programmiersprache DIST. Dateneingabe und Datenstruktirierung. Akademie Verlag, Berlin.

    Google Scholar 

  • LAGAKOS, S. W. and SCHOENFELD, D. A. (1984): Properties of proportional-hazards score tests under misspecified regression models. Biometrics 40,1037-1048.

    Article  MathSciNet  MATH  Google Scholar 

  • NELDER, J. (1996): Statistical computing. In P. Armitage and D. Hand (Eds.): Advances in Biometry. 50 Years of the International Biometric Society. Wiley, New York, 201-212.

    Google Scholar 

  • POTTER, M. (2005): A permutation test for inference in logistic regression with small- and moderate-sized data sets. Statistics in Medicine 24 (5), 693-708.

    Article  MathSciNet  Google Scholar 

  • TSIATIS, A., ROSNER, G. L. and TRITCHLER, D. L. (1985): Group sequential tests with censored survival data adjusting for covariates. Biometrika 72(2), 365-373.

    Article  MathSciNet  MATH  Google Scholar 

  • SARGENT, D.J., CONLEY, B.A., ALLEGRA, C., et al. (2005): Clinical trial designs for predictive marker validation in cancer treatment trials. Journal of Clinical Oncology 23(9), 2020-2027.

    Article  Google Scholar 

  • SCHÄFER, H. and MÃœLLER, H. (2001): Modification of the sample size and the schedule of interim analyses in survival trials based on data inspections. Statistics in Medicine 20, 3741-3751.

    Article  Google Scholar 

  • SIMON, R. (2008). Using genomics in clinical trial design. Clinical Cancer Research 14, 5984-5993.

    Article  Google Scholar 

  • VICTOR, N. (1984): Computational statistics - science or tool? (with discussion). Statistical Software Newsletter 10, 105-125.

    Google Scholar 

  • WUNDER, C., KOPP-SCHNEIDER, A, and EDLER, L. (2010): Adaptive group sequential trial to improve treatment in rare patient entities (to appear).

    Google Scholar 

  • TUKEY, J.W. (1977): Exploratory Data Analysis. Addison-Wesley, New York.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz Edler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Edler, L., Wunder, C., Werft, W., Benner, A. (2010). Computational Statistics Solutions for Molecular Biomedical Research: A Challenge and Chance for Both. In: Lechevallier, Y., Saporta, G. (eds) Proceedings of COMPSTAT'2010. Physica-Verlag HD. https://doi.org/10.1007/978-3-7908-2604-3_2

Download citation

Publish with us

Policies and ethics