Skip to main content

The NPAIRS Computational Statistics Framework for Data Analysis in Neuroimaging

  • Conference paper
  • First Online:
Proceedings of COMPSTAT'2010

Abstract

We introduce the role of resampling and prediction (p) metrics for flexible discriminant modeling in neuroimaging, and highlight the importance of combining these with measurements of the reproducibility (r) of extracted brain activation patterns. Using the NPAIRS resampling framework we illustrate the use of (p, r) plots as a function of the size of the principal component subspace (Q) for a penalized discriminant analysis (PDA) to: optimize processing pipelines in functional magnetic resonance imaging (fMRI), and measure the global SNR (gSNR) and dimensionality of fMRI data sets. We show that the gSNRs of typical fMRI data sets cause the optimal Q for a PDA to often lie in a phase transition region between gSNR ≃ 1 with large optimal Q versus SNR ≫ 1 with small optimal Q.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Afshinpour B, Hamid S-Z, Gholam-Ali H-Z, Grady C, and Strother SC. (In press). Mutual Information Based Metrics for Evaluation of fMRI Data Processing Approaches.Hum Brain Mapp.

    Google Scholar 

  • EFRON B, and TIBSHIRANI R.(1993).An Introduction to the Bootstrap. London, U.K.: Chapman & Hall.

    MATH  Google Scholar 

  • EFRON B, and TIBSHIRANI R. (1997). Improvements on cross-validation: The .632+ bootstrap method. J. Amer. Statist. Assoc. 92, 548–560.

    Article  MathSciNet  MATH  Google Scholar 

  • EVANS JW, TODD RM, TAYLOR MJ, and STROTHER SC. (2010). Group specific optimisation of fMRI processing steps for child and adult data. NeuroImage, 50, 479–490.

    Article  Google Scholar 

  • GRADY C, SPRINGER M, HONGWANISHKUL D, MCINTOSH A, and WINOCUR G. (2006). Age-Related Changes in Brain Activity across the Adult Lifespan: A Failure of Inhibition? J Cogn Neurosci, 18, 227–241.

    Article  Google Scholar 

  • JACOBSEN D.J., HANSEN L.K. and MADSEN K.H. (2008): Bayesian model comparison in nonlinear BOLD fMRI hemodynamics. Neural Comput, 20, 738–55.

    Article  Google Scholar 

  • KJEMS U., HANSEN L.K., ANDERSON J., FRUTIGER S., MULEY S., SIDTIS J., ROTTENBERG D. and STROTHER S.C. (2002): The quantitative evaluation of functional neuroimaging experiments: mutual information learning curves. NeuroImage, 15, 772–86.

    Article  Google Scholar 

  • KUSTRA R. and STROTHER S.C. (2001). Penalized discriminant analysis of [15O]-water PET brain images with prediction error selection of smoothness and regularization hyperparameters. IEEE Trans Med Imaging, 20, 376–87.

    Article  Google Scholar 

  • LACONTE S., ANDERSON J., MULEY S., ASHE J., FRUTIGER S., REHM K., HANSEN L.K., YACOUB E., HU X., ROTTENBERG D. and STROTHER S. (2003): The evaluation of preprocessing choices in single-subject BOLD fMRI using NPAIRS performance metrics. NeuroImage, 18, 10–27.

    Article  Google Scholar 

  • MARDIA K.V., KENT J.T. and BIBBY J.M. (1979): Multivariate Analysis. San Diego: Academic Press.

    MATH  Google Scholar 

  • PEREIRA F., MITCHELL T., and BOTVINICK M. (2009): Machine learning classifiers and fMRI: a tutorial overview. NeuroImage, 45, 199–209.

    Article  Google Scholar 

  • SCHMAH T., HINTON G., ZEMEL R.S., SMALL S.L., and STROTHER S.C. (2008): Generative versus discriminative training of RBMs for classification of fMRI images. Neural Information Processing Systems. Vancouver, Canada. p 1409–1416.

    Google Scholar 

  • STROTHER S.C. (2006): Evaluating fMRI preprocessing pipelines. IEEE Eng Med Biol Mag, 25, 27–41.

    Article  Google Scholar 

  • STROTHER S.C., ANDERSON J., HANSEN L.K., KJEMS U., KUSTRA R., SIDTIS J., FRUTIGER S., MULEY S., LACONTE S. and ROTTENBERG D. (2002): The quantitative evaluation of functional neuroimaging experiments: the NPAIRS data analysis framework. NeuroImage, 15, 747–71.

    Article  Google Scholar 

  • STROTHER S.C., LA CONTE S., KAI HANSEN L., ANDERSON J., ZHANG J., PULAPURA S. and ROTTENBERG D. (2004): Optimizing the fMRI data-processing pipeline using prediction and reproducibility performance metrics: I. A preliminary group analysis. NeuroImage, 23, 196–207.

    Article  Google Scholar 

  • YOURGANOV G., XU C., LUKIC A., GRADY C., SMALL S., WERNICK M. and STROTHER S.C. (In press): Dimensionality estimation for optimal detection of functional networks in BOLD fMRI data. NeuroImage.

    Google Scholar 

  • ZHANG J., ANDERSON J.R., LIANG L., PULAPURA S.K., GATEWOOD L., ROTTENBERG D.A. and STROTHER S.C. (2009): Evaluation and optimization of fMRI single-subject processing pipelines with NPAIRS and second-level CVA. Magn Reson Imaging, 27, 264–78.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Strother .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Strother, S., Oder, A., Spring, R., Grady, C. (2010). The NPAIRS Computational Statistics Framework for Data Analysis in Neuroimaging. In: Lechevallier, Y., Saporta, G. (eds) Proceedings of COMPSTAT'2010. Physica-Verlag HD. https://doi.org/10.1007/978-3-7908-2604-3_10

Download citation

Publish with us

Policies and ethics