Skip to main content

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

Under steady state, hematopoietic cells at all stages of differentiation and some lymphoid cell populations are confined within the bone marrow, while mature cells exit and enter peripheral blood. A small population of hematopoietic stem (HSC) and progenitor (HPC) cells also traffic through the peripheral circulation. The initial observations that HPC cells are found in the blood of patients recovering from chemotherapy [13] led to the realization that HSC and HPC can be forced or ‘mobilized’ from marrow to blood where they can be collected by apheresis and utilized for transplantation [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McCredie KB, Hersch EM, Freireich EJ (1971) Cells capable of colony formation in the peripheral blood of man. Science 171: 293–294

    Article  PubMed  CAS  Google Scholar 

  2. Kurnick JE, Robinson WA (1971) Colony growth of human peripheral white blood cells in vitro. Blood 37: 136–141

    PubMed  CAS  Google Scholar 

  3. Chervenick PA, Boggs DR (1971) In vitro growth of granulocytic and mononuclear cell colonies from blood of normal individuals. Blood 37: 131–135

    PubMed  CAS  Google Scholar 

  4. To LB, Haylock DN, Simmons PJ, Juttner CA (1997) The biology and clinical uses of blood stem cells. Blood 89: 2233–2258

    PubMed  CAS  Google Scholar 

  5. Kessinger A, Armitage JO (1991) The evolving role of autologous peripheral blood stem cell transplantation following high-dose therapy for malignancies. Blood 77: 211–213

    PubMed  CAS  Google Scholar 

  6. Papayannopoulou T (2004) Current mechanistic scenarios in hematopoietic stem/progenitor cell mobilization. Blood 103: 1580–1585

    Article  PubMed  CAS  Google Scholar 

  7. Fruehauf S, Seggewiss R (2003) Its moving day: factors affecting peripheral blood stem cell mobilization and strategies for improvement. Br J Haematol 122: 360–375

    Article  PubMed  CAS  Google Scholar 

  8. Thomas J, Liu F, Link DC (2002) Mechanisms of mobilization of hematopoietic progenitors with granulocyte colony-stimulating factor. Curr Opin Hematol 9: 183–189

    Article  PubMed  Google Scholar 

  9. Goldman JM, Horowitz MM (2002) The international bone marrow registry. Int J Hematol 76: 393–397

    Article  PubMed  Google Scholar 

  10. Ringden O, Remberger M, Runde V, Bornhausser M, Blau IW, Basara N, Holig K, Beelen DW, Hagglund H, Basu O et al (2000) Faster engraftment of neutrophils and platelets with peripheral blood stem cells from unrelated donors: a comparison with marrow transplantation. Bone Marrow Transplant 26: 6–8

    Article  Google Scholar 

  11. Benito AI, Diaz MA, Gonzales-Vicent M, Sevilla J, Madero L (2004) Hematopoietic stem cell transplantation using umbilical cord blood progenitors: review of current clinical results. Bone Marrow Transplant 33: 675–690

    Article  PubMed  CAS  Google Scholar 

  12. Bensinger W, Singer J, Appelbaum FR, Lilleby K, Longin K, Rowley S, Clarke E, Clift R, Hansen J, Shields T et al (1993) Autologous transplantation with peripheral blood mononuclear cells collected after administration of recombinant granulocyte stimulating factor. Blood 81: 3158–3163

    PubMed  CAS  Google Scholar 

  13. Blume KG, Thomas ED (2000) A review of autologous hematopoietic cell transplantation. Biol Bone Marrow Transplant 6: 1–12

    Article  CAS  Google Scholar 

  14. Kennedy J (1998) Peripheral blood progenitor cell mobilization: A clinical review. Pharmacotherapy 18: 3–8

    Google Scholar 

  15. Welte K, Gabrilove J, Bronchud MH, Platzer E, Morstyn G (1996) Filgrastim (rmetHuG-CSF): The first 10 years. Blood 88: 1907–1929

    PubMed  CAS  Google Scholar 

  16. Aversa F, Tabilio A, Velardi A, Cunningham I, Terenzi A, Falzetti F, Ruggeri L, Barbabietola G, Aristei C, Latini P et al (1998) Treatment of high risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype. N Eng J Med 339: 1186–1193

    Article  CAS  Google Scholar 

  17. Reisner Y, Martelli MF (2000) Transplantation tolerance induced by “mega dose” CD34+ cell transplants. Exp Hematol28: 119–127

    Article  PubMed  CAS  Google Scholar 

  18. Bachar-Lustig E, Li HW, Gur H, Krauthgamer R, Marcus H, Reisner Y (1999) Induction of donor-type chimerism and transplantation tolerance across major histocompatibility barriers in sublethally irradiated mice by Sca-1+Linbone marrow progenitor cells: Synergisms with non-alloreactive (host x donor) F1 T cells. Blood 94: 3212–3221

    PubMed  CAS  Google Scholar 

  19. Stiff P, Gingrich R, Luger S, Wyres MR, Brown RA, Lemaistre CF, Perry J, Schenkein DP, List A, Mason JR et al (2000) A randomized phase 2 study of PBPC mobilization by stem cell factor and filgrastim in heavily pretreated patients with Hodgkin’s disease or non-Hodgkin’s lymphoma. Bone Marrow Transplant 26: 471–481

    Article  PubMed  CAS  Google Scholar 

  20. Croop JM, Cooper R, Fernandez C, Graves V, Kreissman S, Hanenberg H, Smith FO, Williams DA (2001) Mobilization and collection of peripheral blood CD34+ cells from patients with Fanconi anemia. Blood 98: 2917–2921

    Article  PubMed  CAS  Google Scholar 

  21. Anderlini P, Przepiorka D, Seong C, Smith TL, Huh YO, Lauppe J, Champlin R, Kärbling M (1997) Factors affecting mobilization of CD34+ cells in normal donors treated with filgrastim. Transfusion 37: 507–512

    Article  PubMed  CAS  Google Scholar 

  22. Schmitz N, Dreger P, Suttorp M, Rohwedder EB, Haferlach T, Löffler H, Hunter A, Russell NH (1995) Primary transplantation of allogeneic peripheral blood progenitor cells mobilized by Filgrastim (Granulocyte Colony-Stimulating Factor). Blood 85: 1666–1672

    PubMed  CAS  Google Scholar 

  23. Lataillade JJ, Clay D, Dupuy C, Rigal S, Jasmin C, Bourin P, Bousse-Kerdiles M-CL (2000) Chemokine SDF-1 enhances circulating CD34+ cell proliferation in synergy with cytokines: possible role in progenitor survival. Blood 95: 756–768

    PubMed  CAS  Google Scholar 

  24. Broxmeyer HE, Kohli L, Kim CH, Lee Y, Mantel C, Cooper S, Hangoc G, Shaheen M, Li X, Clapp DW (2003) Stromal cell derived factor-1/CXCL12 enhances survival/antiapoptosis of hematopoietic stem and progenitor cells: direct effects mediated through CXCR4 and Gαi proteins. J Leukocyte Biol 73: 630–638

    Article  PubMed  CAS  Google Scholar 

  25. Broxmeyer HE, Cooper S, Kohli L, Hangoc G, Lee YH, Mantel C, Clapp DW, Kim CH (2003) Transgenic expression of stromal cell derived factor-1/CXCL12 enhances myeloid progenitor cell survival/anti-apoptosis in vitro in response to growth factor withdrawal and enhances myelopoiesis. J Immunol 170: 421–429

    PubMed  CAS  Google Scholar 

  26. Lee Y, Gotoh, Kwon HJ, You M, Kohli L, Mantel C, Cooper S, Hangoc G, Miyazawa K, Ohyashiki K, Broxmeyer HE (2002) Enhancement of intracellular signaling associated with hematopoietic progenitor cell survival in response to SDF-1/CXCL12 in synergy with other cytokines. Blood 99: 4307–4317

    Article  PubMed  CAS  Google Scholar 

  27. Lataillade JJ, Clay D, Bourin P, Herodin F, Dupuy C, Jasmin C, Le Bousse-Kerdiles MC (2002) Stromal cell-derived factor 1 regulates primitive hematopoiesis by suppressing apoptosis and by promoting G0/G1 transition in CD34+ cells: evidence for an autocrine/paracrine mechanism. Blood 99: 1117–1129

    Article  PubMed  CAS  Google Scholar 

  28. Broxmeyer HE, Cooper S, Hangoc G, Kim KC (2005) Stromal cell-derived factor-1/CXCL12 selectively counteracts inhibitory effects of myelosuppressive chemokines on hematopoietic progenitor cell proliferation in vitro. Stem Cells Dev 14: 199–203

    Article  PubMed  CAS  Google Scholar 

  29. Aiuti A, Webb IJ, Bleul C, Springer T, Gutierrez-Ramos JC (1997) provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. J Exp Med 185: 111–120

    Article  PubMed  CAS  Google Scholar 

  30. Kim CH, Broxmeyer HE (1998) In vitro behavior of hematopoietic progenitor cells under the influence of chemoattractants: Stromal cell-derived factor-1, steel factor, and the bone marrow environment. Blood 91: 100–110

    PubMed  CAS  Google Scholar 

  31. Möhle R, Bautz F, Rafi S, Moore MAS, Brugger W, Kanz L (1998) The chemokine receptor CXCR4 is expressed on CD34+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1. Blood 91: 4523–4530

    PubMed  Google Scholar 

  32. Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T, Nagler A, Ben-Hur H, Many A, Shultz L et al (1999) Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 283: 845–848

    Article  PubMed  CAS  Google Scholar 

  33. Lapidot T, Kollet O (2002) The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/SCID and NOD/SCID/β2mnull mice. Leukemia 16: 1992–2203

    Article  PubMed  CAS  Google Scholar 

  34. Christopherson KW II, Hangoc G, Mantel CR, Broxmeyer HE (2004) Modulation of hematopoietic stem cell homing and engraftment by CD26. Science 305: 1000–1003

    Article  PubMed  CAS  Google Scholar 

  35. Guo Y, Hangoc G, Bian H, Pelus LM, Broxmeyer HE (2005) SDF-1/CXCL12 enhances survival and chemotaxis of murine embryonic stem cells and production of primitive and definitive hematopoietic progenitor cells. Stem Cells 23: 1324–1332

    Article  PubMed  CAS  Google Scholar 

  36. Lord BI, Woolford LB, Wood LM, Czaplewski LG, McCourt M, Hunter MG, Edwards RM (1995) Mobilization of early hematopoietic progenitor cells with BB-10010: A genetically engineered variant of human macrophage inflammatory protein-1α. Blood 85: 3412–3415

    PubMed  CAS  Google Scholar 

  37. Broxmeyer HE, Orazi A, Hague NL, Sledge GW Jr., Rasmussen H, Gordon MS (1998) Myeloid progenitor cell proliferation and mobilization effects of BB10010, a genetically engineered variant of human macrophage inflammatory protein-1α, in a phase I clinical trial in patients with relapsed/refractory breast cancer. Blood Cells, Molec, and Dis 24: 14–30

    Article  CAS  Google Scholar 

  38. Broxmeyer HE, Cooper S, Hangoc G, Gao J-L, Murphy PM (1999) Dominant myelopoietic effector functions mediated by chemokine receptor CCR1. J Exp Med 189: 1987–1992

    Article  PubMed  CAS  Google Scholar 

  39. Laterveer L, Lindley IJD, Hamilton MS, Willemze R, Fibbe WE (1995) Interleukin-8 induces rapid mobilization of hematopoietic stem cells with radioprotective capacity and long-term myelolymphoid repopulating ability. Blood 85: 2269–2275

    PubMed  CAS  Google Scholar 

  40. Fibbe WE, Pruijt JFM, Velders G, Opdenakker G, van Kooyk Y, Figdor CG, Willemze R (1999) Biology of IL-8-induced stem cell mobilization. Annals NY Acad Sci 872: 71–82

    Article  CAS  Google Scholar 

  41. Laterveer L, Zijlmans JMJM, Lindley IJD, Hamilton MS, Willemze R, Fibbe WE (1996) Improved survival of lethally irradiated recipient mice transplanted with circulating progenitor cells mobilized by IL-8 after pretreatment with stem cell factor. Exp Hematol 24: 1387–1393

    PubMed  CAS  Google Scholar 

  42. King AG, Horowitz D, Levin SB, Farese AM, MacVittie TJ, Pelus LM (2001) Rapid mobilization of murine hematopoietic stem cells with enhanced engraftment properties and evaluation of hematopoietic progenitor cell mobilization in rhesus monkeys by a single injection of SB-251353, a specific truncated form of the human CXC chemokine GROβ. Blood 97: 1534–1542

    Article  PubMed  CAS  Google Scholar 

  43. Pelus LM, Horowitz D, Cooper SC, King AG (2002) Peripheral blood stem cell mobilization. A role for CXC chemokines. Crit Rev Oncol Hematol 43: 257–275

    Article  PubMed  Google Scholar 

  44. King AG, Johanson K, Frey CA, DeMarsh PL, White JR, McDevitt P, McNulty D, Balcarek J, Jonak ZL, Bhatnagar PK et al (2000) Identification of unique truncated KC/GROβ chemokines with potent hematopoietic and anti-infective activities. J Immunol 164: 3774–3782

    PubMed  CAS  Google Scholar 

  45. Pelus LM, Bian H, King AG, Fukuda S (2004) Neutrophil-derived MMP-9 mediates synergistic mobilization of hematopoietic stem and progenitor cells by the combination of G-CSF and the chemokines GROβ/CXCL2 and GROβT/CXCL2Δ4. Blood 103: 110–119

    Article  PubMed  CAS  Google Scholar 

  46. Wang J-B, Mukaida N, Zhang Y, Ito T, Nakao S, Matsushima K (1997) Enhanced mobilization of hematopoietic progenitor cells by mouse MIP-2 and granulocyte colony-stimulating factor in mice. J Leukocyte Biol 62: 503–509

    PubMed  CAS  Google Scholar 

  47. Fibbe WE, Pruijt JFM, Kooyk YV, Figdor CG, Opdenakker G, Willemze R (2000) The role of metalloproteinases and adhesion molecules in interleukin-8-induced stem cell mobilization. Sem Hematol 37: 19–24

    Article  CAS  Google Scholar 

  48. Broxmeyer HE, Cooper S, Cacalano G, Hague NL, Bailish E, Moore MW (1996) Involvement of Interleukin (IL) 8 receptor in negative regulation of myeloid progenitor cells in vivo: evidence from mice lacking the murine IL-8 receptor homologue. J Exp Med 184: 1825–1832

    Article  PubMed  CAS  Google Scholar 

  49. Laterveer L, Lindley IJD, Heemskerk DPM, Camps JAJ, Pauwels EKJ, Willemze R, Fibbe WE (1996) Rapid mobilization of hematopoietic progenitor cells in rhesus monkeys by a single intravenous injection of Interleukin-8. Blood 87: 781–788

    PubMed  CAS  Google Scholar 

  50. Pruijt JFM, Verzaal P, van Os R, de Kruijf E-JFM, van Schie MLJ, Mantovani A, Vecchi A, Lindley IJD, Willemze R, Starchx S, Opendaker G, Fibbe WE (2002) Neutrophils are indispensable for hematopoietic stem cell mobilization induced by interleukin-8 in mice. Proc Natl Acad Sci USA 99: 6228–6233

    Article  PubMed  CAS  Google Scholar 

  51. Pruijt JFM, van Kooyk Y, Figdor CG, Lindley IJD, Willemze R, Fibbe WE (1998) Anti-LFA-1 blocking antibodies prevent mobilization of hematopoietic progenitor cells induced by interleukin-8. Blood 91: 4099–4105

    PubMed  CAS  Google Scholar 

  52. Pruijt JFM, Fibbe WE, Laterveer L, Pieters RA, Lindley IJD, Paemen L, Masure S, Willemze R, Opdenakker G (1999) Prevention of interleukin-8-induced mobilization of hematopoietic progenitor cells in rhesus monkeys by inhibitory antibodies against the Metalloproteinase gelatinase B (MMP-9). Proc Natl Acad Sci USA 96: 10863–10868

    Article  PubMed  CAS  Google Scholar 

  53. Anderson DC, Miller LJ, Schmalstieg FC, Rothlein R, Springer TA (1986) Contributions of the Mac-1glycoprotein family to adherence-dependent granulocyte functions: structure-function assessments employing subunit-specific monoclonal antibodies. J Immunol 137: 15–27

    PubMed  CAS  Google Scholar 

  54. Borregaard N, Cowland JB (2000) Granules of the human neutrophilic polymorphonuclear leukocyte. Blood 89: 3503–3521

    Google Scholar 

  55. Papayannopoulou T, Priestly GV, Nakamoto B, Zafiropoulos V, Scott LM, Harlan JM (2001) Synergistic mobilization of hematopoietic progenitor cells using concurrent β1 and β2 integrin blockade or β2-deficient mice. Blood 97: 1282–1288

    Article  PubMed  CAS  Google Scholar 

  56. Velders GA, Pruijt JFM, Verzaal P, van Os R, van Kooyk Y, Figdor CG, de Kruijf E-JFM, Willemze R, Fibbe WE (2002) Enhancement of G-CSF-induced stem cell mobilization by antibodies against the β2 integrins LFA-1 and Mac-1. Blood 327: 327–333

    Article  Google Scholar 

  57. Werb Z (1997) ECM and cell surface proteolysis: Regulating cellular ecology. Cell 91: 439–442

    Article  PubMed  CAS  Google Scholar 

  58. Birkedal-Hansen H, Moore WG, Bodden MK, Windsor LJ, Birkedal-Hansen B, DeCarlo A, Engler JA (1993) Matrix metalloproteinases: a review. Crit Rev Oral Biol Med 4: 197–250

    PubMed  CAS  Google Scholar 

  59. Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM (2000) Matrix metalloproteinases: Biological activity and clinical implications. J Clin Oncol 18: 1135–1149

    PubMed  CAS  Google Scholar 

  60. Ramos-Desimone N, Hahn-Dantona E, Sipley J, Nagase H, French DL, Quigley JP (1999) Activation of matrix metalloproteinase-9 (MMP-9) via a converging plasmin/stromelysin-1 cascade enhances tumor cell invasion. J Biol Chem 274: 13066–13076

    Article  PubMed  CAS  Google Scholar 

  61. Fukuda S, Bian H, King AG, Pelus LM (2005) The CXC chemokine GROβ mobilizes PBSC with enhanced homing capacity independent of the SDF-1/CXCR4 axis. Submitted

    Google Scholar 

  62. Kollet O, Spiegel A, Peled A, Petit I, Byk T, Hershkoviz R, Guetta E, Barkai G, Nagler A, Lapidot T (2001) Rapid and efficient homing of human CD34(+)CD38(−/low) CXCR4(+) stem and progenitor cells to the bone marrow and spleen of NOD/SCID and NOD/SCID/β2m(null) mice. Blood 97: 3283–3291

    Article  PubMed  CAS  Google Scholar 

  63. Shen H, Cheng T, Olszak I, Garcia-Zepeda E, Lu Z, Hermann S, Fallon R, Luster AD, Scadden DT (2001) CXCR-4 desensitization is associated with tissue localization of hematopoietic progenitor cells. J Immunol 166: 5027–5033

    PubMed  CAS  Google Scholar 

  64. Hattori K, Heissig B, Tashiro T, Tateno M, Shieh J-H, Hackett NR, Quitoriano MS, Crystal RG, Rafii S, Moore MAS (2001) Plasma elevation of stromal cell-derived factor-1 induces mobilization of mature and immature hematopoietic progenitor and stem cells. Blood 97: 3354–3360

    Article  PubMed  CAS  Google Scholar 

  65. Ma Q, Jones D, Springer TA (1999) The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment. Immunity 10: 463–471

    Article  PubMed  CAS  Google Scholar 

  66. Nagasawa T, Hirota S, Tachibaba K, Takakura N, Nishikawa S, Kitamura Y, Yoshida N, Kikutani H, Kishimoto T (1996) Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382: 635–638

    Article  PubMed  CAS  Google Scholar 

  67. Zou Y-R, Kottmann AH, Kuroda M, Taniuchi I, Littman DR (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393: 595–599

    Article  PubMed  CAS  Google Scholar 

  68. Peled A, Grabovsky V, Habler L, Sandbank J, Arenzana-Seisdedos F, Petit I, Ben-Hur H, Lapidot T, Alon R (1999) The chemokine SDF-1 stimulates integrin-mediated arrest of CD34+ cells on vascular endothelium under shear flow. J Clin Invest 104: 1199–1211

    Article  PubMed  CAS  Google Scholar 

  69. Hidalgo A, Sanz-Rodríguez F, Rodríguez-Fernández JL, Albella B, Blaya C, Wright N, Cabañas C, Prósper F, Gutierrez-Ramos JC, Teixidó J (2001) Chemokine stromal cellderived factor-1α modulates VLA-4 integrin-dependent adhesion to fibronectin and VCAM-1 on bone marrow hematopoietic progenitor cells. Exp Hematol 29: 345–355

    Article  PubMed  CAS  Google Scholar 

  70. Shen W, Bendall LJ, Gottlieb DJ, Bradstock KF (2001) The chemokine receptor CXCR4 enhances integrin-mediated in vitro adhesion and facilitates engraftment of leukemic precursor-B cells in the bone marrow. Exp Hematol 29: 1439–1447

    Article  PubMed  CAS  Google Scholar 

  71. Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L, Ponomaryov T, Taichman RS, Arenzana-Seisdedos F, Fujii N et al (2002) G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nature Immunology 3: 687–694

    Article  PubMed  CAS  Google Scholar 

  72. Lévesque J-P, Hendy J, Takamatsu Y, Simmons PJ, Bendall LJ (2003) Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by G-CSF or cyclophosphamide. J Clin Invest 111: 187–196

    Article  PubMed  CAS  Google Scholar 

  73. Delgado MB, Clark-Lewis I, Loescher P, Langen H, Thelen M, Baggiolini M, Wolf M (2001) Rapid inactivation of stromal cell-derived factor-1 by cathepsin G associated with lymphocytes. Eur J Immunol 31: 699–707

    Article  PubMed  CAS  Google Scholar 

  74. McQuibban GA, Butler GS, Gong J-H, Bendall L, Powers C, Clark-Lewis I, Ovrall CM (2001) Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J Cell Biol 276: 43503–43508

    CAS  Google Scholar 

  75. Semerad CL, Liu F, Gregory AD, Stumpf K, Link DC (2002) G-CSF is an essential regulator of neutrophil trafficking from the bone marrow to the blood. Immunity 17: 413–423

    Article  PubMed  CAS  Google Scholar 

  76. Semerad CL, Liu F, Christopher MJ, Link DC (2003) G-CSF treatment induces a significant decrease in CXCL12 mRNA expression in the bone marrow. Blood 102: 824a

    Google Scholar 

  77. Christopher MJ, Liu F, Link DC (2004) Disruption of SDF-1/CXCR4 signaling during Flt-3 ligand and stem cell factor (SCF) induced hematopoietic progenitor mobilization. Blood 104: 121b

    Google Scholar 

  78. Pelus LM, Bian H, Fukuda S, Wong D, Merzouk A, Salari H (2005) The CXCR4 agonist peptide, CTCE-0021, rapidly mobilizes polymorphonuclear neutrophils and hematopoietic progenitor cells into peripheral blood and synergizes with granulocyte colony-stimulating factor. Exp Hematol 33: 295–307

    Article  PubMed  CAS  Google Scholar 

  79. Valenzuela-Fernández A, Planchenault T, Baleux F, Staropoli I, LeBarillec K, Leduc D, Deluanay T, Lazarini F, Virelizier J-L, Chignard M et al (2002) Leukocyte elastase negatively regulates stromal cell-derived factor-1 (SDF-1)/CXCR4 binding and functions by amino-terminal processing of SDF-1 and CXCR4. J Biol Chem 277: 15677–15689

    Article  PubMed  CAS  Google Scholar 

  80. Merzouk A, Wong D, Salari H, Bian H, Fukuda S, Pelus LM (2004) Rational design of chemokine SDF-1 analogs with agonist activity for the CXCR4 receptor and the capacity to rapidly mobilize PMN and hematopoietic progenitor cells in mice. Lett Drug Des Discov 1: 126–134

    Article  CAS  Google Scholar 

  81. Zhong R, Law P, Wong D, Merzouk A, Salari H, Ball ED (2004) Small peptide analogs to stromal derived factor-1 enhance chemotactic migration of human and mouse hematopoietic cells. Exp Hematol 32: 470–475

    Article  PubMed  CAS  Google Scholar 

  82. Christopherson K II, Cooper S, Broxmeyer HE (2003) Cell surface peptidase CD26/DPPIV mediates G-CSF mobilization of mouse progenitor cells. Blood 101: 4680–4686

    Article  PubMed  CAS  Google Scholar 

  83. Christopherson K II, Hangoc G, Broxmeyer HE (2002) Cell surface peptidase CD26/Dipeptidylppeptidase IV regulates CXCL12/Stromal cell-derived factor-1α-mediated chemotaxis of human cord blood CD34+ progenitor cells. J Immunol 169: 7000–7008

    PubMed  CAS  Google Scholar 

  84. Christopherson KW II, Cooper S, Broxmeyer HE (2003) CD26 is essential for normal G-CSF-induced progenitor cell mobilization as determined by CD26−/− mice. Exp Hematol 31: 1126–1134

    PubMed  CAS  Google Scholar 

  85. De Clercq E (2003) The bicyclan AMD3100 story. Nat Rev Drug Discov 2: 581–587

    Article  PubMed  CAS  Google Scholar 

  86. Hatse S, Princen K, Bridger G, De Clercq E, Schols D (2002) Chemokine receptor inhibition by AMD3100 is strictly confined to CXCR4. FEBS Letters 527: 255–262

    Article  PubMed  CAS  Google Scholar 

  87. Joo EK, Broxmeyer HE, Kwon HJ, Kang HB, Kim JS, Lim JS, Choe YK, Choe IS, Myung PK, Lee Y (2004) Enhancement of cell survival by stromal cell-derived factor-1/CXCL12 involves activation of CREB and induction of Mcl-1 and c-Fos in factor-dependent human cell line MO7e. Stem Cells Dev 13: 563–570

    Article  PubMed  CAS  Google Scholar 

  88. Broxmeyer HE, Clapp DW, Orschell CM, Hangoc G, Cooper S, Plett A, Liles WC, Li X, Graham-Evans B, Calandra G et al (2005) Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med 201: 1307–1318

    Article  PubMed  CAS  Google Scholar 

  89. Liles WC, Broxmeyer HE, Rodger E, Wood B, Hübel K, Cooper S, Hangoc G, Bridger GJ, Henson GW, Calandra G et al (2003) Mobilization of hematopoietic progenitor cells in healthy volunteers by AMD3100, a CXCR4 antagonist. Blood 102: 2728–2730

    Article  PubMed  CAS  Google Scholar 

  90. Hubel K, Liles WC, Broxmeyer HE, Rodger E, Wood B, Cooper S, Hangoc G, MacFarland R, Bridger GJ, Henson GW et al (2004) Leukocytosis and mobilization of CD34+ hematopoietic progenitor cells by AMD3100, a CXCR4 antagonist. Supportive Cancer Therapy 1: 165–172

    Article  PubMed  Google Scholar 

  91. Devine SM, Flomenberg N, Vesole DH, Liesveld J, Weisdoef D, Badel K, Calandra G, Dipersio JF (2004) Rapid mobilization of CD34+ cells following administration of the CXCR4 antagonist AMD3100 to patients with multiple myeloma and Non-Hodgkin’s lymphoma. J Clin Oncol 22: 1095–1102

    Article  PubMed  CAS  Google Scholar 

  92. Liles WC, Rodger E, Broxmeyer HE, Dehner C, Badel K, Calandra J, Christensen J, Wood B, Price TH, Dale DC (2004) Augmented mobilization and collection of CD34+ hematopoietic cells from normal human volunteers stimulated with G-CSF by singledose administration of AMD3100, a CXCR4 antagonist. Transfusion 45: 295–300

    Article  Google Scholar 

  93. Yang OO, Swanberg SL, Lu Z, Dziejman M, McCoy J, Luster AD, Walker BD, Herrmann SH (1999) Enhanced inhibition of human immunodeficiency virus type 1 by metstromal-derived factor 1β correlates with down-modulation of CXCR4. J Virology 73: 4582–4589

    PubMed  CAS  Google Scholar 

  94. Basu S, Broxmeyer HE (2005) Transforming growth factor-ta1 modulates responses of CD34+ cord blood cells to stromal cell-derived factor-1/CXCL12. Blood 106: 485–493

    Article  PubMed  CAS  Google Scholar 

  95. Murdoch C, Finn A (2000) Chemokine receptors and their role in inflammation and infectious diseases. Blood 95: 3032–3043

    PubMed  CAS  Google Scholar 

  96. Liu F, Wu HY, Wesselschmidt RKT, Link DC (1996) Impaired production and increased apoptosis of neutrophils in granulocyte colony-stimulating factor receptor-deficient mice. Immunity 5: 491–501

    Article  PubMed  CAS  Google Scholar 

  97. Lévesque J-P, Liu F, Simmons PJ, Betsuyaku T, Senior RM, Pham C, Link DC (2004) Characterization of hematopoietic progenitor mobilization in protease-deficient mice. Blood 104: 65–72

    Article  PubMed  CAS  Google Scholar 

  98. Lévesque J-P, Takamatsu Y, Nilsson SK, Haylock DN, Simmons PJ (2001) Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood 98: 1289–1297

    Article  PubMed  Google Scholar 

  99. Lévesque J-P, Hendy J, Takamatsu Y, Williams B, Winkler IG, Simmons PJ (2002) Mobilization by either cyclophosphamide or granulocyte colony-stimulating factor transforms the bone marrow into a highly proteolytic environment. Exp Hematol 30: 440–449

    Article  PubMed  Google Scholar 

  100. Baggiolini M (1998) Chemokines and leukocyte traffic. Nature 392: 565–568

    Article  PubMed  CAS  Google Scholar 

  101. Proost P, Struyf S, Schols D, Durinx C, Wuyts A, Lenaerts J-P, DeClercq E, DeMeester I, VanDamme J (1998) Processing by CD26/dipeptidyl-peptidase IV reduces the chemotactic and anti-HIV-1 activity of stromal-cell derived factor-1α. FEBS Letters 432: 73–76

    Article  PubMed  CAS  Google Scholar 

  102. Flomenberg N, Devine SM, DiPersio JF, Liesveld JL, McCarty JM, Rowley SD, Vesole DH, Badel K, Calandra G (2005) The use of AMD3100 plus G-CSF for autologous hematopoietic progenitor cell mobilization is superior to G-CSF alone. Blood 106: 1867–1874

    Article  PubMed  CAS  Google Scholar 

  103. Moore MAS, Hattori K, Heissig B, Shieh J-H, Dias S, Crystal RG, Rafii S (2001) Mobilization of endothelial and hematopoietic stem and progenitor cells by adenovector-mediated elevation of serum levels of SDF-1, VEGF and angiopoietin-1. Annals NY Acad Sci 938: 36–45

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Pelus, L.M., Broxmeyer, H.E. (2007). Chemokine axes in hematopoietic stem cell mobilization. In: Neote, K., Letts, G.L., Moser, B. (eds) Chemokine Biology — Basic Research and Clinical Application. Progress in Inflammation Research. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7437-2_10

Download citation

Publish with us

Policies and ethics