Skip to main content

Morphology of Atherosclerotic Lesions

  • Chapter
  • First Online:

Abstract

Atherosclerosis is a multifactorial and multipart progressive disease manifested by the focal development within the arterial wall of lesions – the atherosclerotic plaques – in response to various deleterious insults that affect the vessel wall’s cells. Among the risk factors, as identified by classical epidemiology, there are dyslipidemia, vasoconstrictor hormones incriminated in hypertension, products of glycoxidation associated with hyperglycemia, pro-inflammatory cytokines and smoking, out of which the first is a prerequisite for the initiation and progression of about half of arterial lesions. In other instances, an inflammatory reaction induced by putative antigens that stimulate T lymphocytes, certain heat shock proteins, components of plasma lipoproteins, and potentially, microbial structures induce atherosclerotic plaque in the absence of systemic hypercholesterolemia [1, 2]. Thus, the process is more complex than previously thought. The conventional view that stressed the role of dyslipidemia in the generation of atherosclerosis was rounded by extensive evidence that inflammation is a key contributor to all stages of this disease, from the initial lesion to the ruptured plaque [2]. In all cases, the atheroma formation entails a progressive process in which the gradual implication of various cells and their secretory products define a sequence of events that leads from the fatty streak to fibro-lipid plaque, and ultimately to plaque rupture and atherothrombosis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Millonig G, Malcom GT, Wick G (2002) Early inflammatory-immunological lesions in juvenile atherosclerosis from the pathobiological determinants of atherosclerosis in youth (PDAY)-study. Atherosclerosis 160:441–448

    Article  PubMed  CAS  Google Scholar 

  2. Libby P, Ridker PM, Göran K (2009) Hansson, inflammation in atherosclerosis, from pathophysiology to practice. J Am Coll Cardiol 54:2129–2138

    Article  PubMed  CAS  Google Scholar 

  3. Nielsen LB, Nordestgaard BG, Stender S, Kjeldsen K (1992) Aortic permeability to LDL as a predictor of aortic cholesterol accumulation in cholesterol-fed rabbits. Arterioscler Thromb 12:1402–1409

    Article  PubMed  CAS  Google Scholar 

  4. Nordestgaard BG, Hjelms E, Stender S, Kjeldsen K (1990) Different efflux pathways for high and low density lipoproteins from porcine aortic intima. Arterioscler Thromb Vasc Biol 10:477–485

    Article  CAS  Google Scholar 

  5. Schwenke DC, StClair RW (1993) Influx, efflux, and accumulation of LDL in normal arterial areas and atherosclerotic lesions of white Carneau pigeons with naturally occurring and cholesterol aggravated aortic atherosclerosis. Arterioscler Thromb 13:1368–1381

    Article  PubMed  CAS  Google Scholar 

  6. Vasile E, Antohe F, Simionescu M, Simionescu N (1989) Transport pathways of beta-VLDL by aortic endothelium of normal and hypercholesterolemic rabbits. Atherosclerosis 75:195–210

    Article  PubMed  CAS  Google Scholar 

  7. Nordestgaard BG, Hjelms E, Stender S, Kjeldsen K (1990) Different efflux pathways for high and low density lipoproteins from porcine aortic intima. Arteriosclerosis 10:477–485

    Article  PubMed  CAS  Google Scholar 

  8. Faggiotto A, Ross R, Harker L (1984) Studies of hypercholesterolemia in the nonhuman primate I. Changes that lead to fatty streak formation. Arterioscler Thromb Vasc Biol 4:323–340

    Article  CAS  Google Scholar 

  9. Kruth HS (1983) Filipin-positive, oil red 0-negative particles in atherosclerotic lesions induced by cholesterol feeding. Lab Invest 50:87–93

    Google Scholar 

  10. Nistor A, Bulla A, Filip DA, Radu A (1987) The hyperlipidemic hamster as a model of experimental atherosclerosis. Atherosclerosis 68:159–173

    Article  PubMed  CAS  Google Scholar 

  11. Simionescu N, Vasile E, Lupu F, Popescu G, Simionescu M (1986) Prelesional events in atherogenesis: accumulation of extracellular cholesterol rich liposomes in the arterial intima and cardiac valves of hyperlipidemic rabbits. Am J Pathol 123:85–101

    Google Scholar 

  12. Kruth HS (1984) Localization of unesterified cholesterol in human atherosclerotic lesions. Demonstration of filipin positive, Oil-Red-0-negative particles. Am J Pathol 114:201–208

    PubMed  CAS  Google Scholar 

  13. Tirziu D, Dobrian A, Tasca C, Simionescu M, Simionescu N (1995) Intimal thickenings of human aortas contain modified reassembled lipoproteins. Atherosclerosis 112:101–114

    Article  PubMed  CAS  Google Scholar 

  14. Sima A, Stancu C, Simionescu M (2009) Vascular endothelium in atherosclerosis. Cell Tissue Res 335:191–203

    Article  PubMed  CAS  Google Scholar 

  15. Tabas I, Williams KJ, Borén J (2007) Macrophages, apoptotic cells and cholesterol – strategies for survival. Circulation 116:1832–1844

    Article  PubMed  CAS  Google Scholar 

  16. Steinberg D (2009) The LDL modification hypothesis of atherogenesis: an update. J Lipid Res 50:S376–S381

    Article  PubMed  Google Scholar 

  17. Ishigakia Y, Okaa Y, Katagiri H (2009) Circulating oxidized LDL: a biomarker and a pathogenic factor. Curr Opin Lipidol 20:363–369

    Article  Google Scholar 

  18. Tsimikas S, Willerson JT, Ridker PM (2006) C-reactive protein and other emerging blood biomarkers to optimize risk stratification of vulnerable patients. J Am Coll Cardiol 47:C19–C31

    Article  PubMed  CAS  Google Scholar 

  19. Filip DA, Nistor A, Bulla A, Radu A, Simionescu M (1987) Cellular events in the development of the valvular atherosclerotic lesions induced by experimental atherosclerosis. Atherosclerosis 67:199–214

    Article  PubMed  CAS  Google Scholar 

  20. Sima A, Bulla A, Simionescu N (1990) Experimental obstructive coronary atherosclerosis in the hyperlipidemic hamster. J Submicrosc Cytol Pathol 22:1–6

    PubMed  CAS  Google Scholar 

  21. Simionescu M (2007) Implications of early structural-functional changes in the endothelium for vascular disease. Arterioscler Thromb Vasc Biol 27:266–274

    Article  PubMed  CAS  Google Scholar 

  22. Mompeo B, Popov D, Sima A, Constantinescu E, Simionescu M (1998) Diabetes induced structural changes of venous and arterial endothelium and smooth muscle cells. J Submicrosc Cytol Pathol 30:475–484

    PubMed  CAS  Google Scholar 

  23. Sima A, Stancu C, Constantinescu E (2004) The hyperlipidemic hamster, a model to study atheroma formation and anti-atherosclerotic drugs effects. In: Simionescu M, Sima A, Popov D (eds) Cellular dysfunction in atherosclerosis and diabetes – reports from bench to bedside. Academy Publishing House, Bucharest, pp 309–322

    Google Scholar 

  24. Boisvert WA, Santiago R, Curtiss LK, Terkeltaub RA (1998) A leukocyte homologue of the IL-8 receptor CXCR-2 mediates the accumulation of macrophages in atherosclerotic lesions of LDL receptor-deficient mice. J Clin Invest 101:353–363

    Article  PubMed  CAS  Google Scholar 

  25. Haley KJ, Lilly CM, Yang JH, Feng Y, Kennedy SP, Turi TG, Thompson JF, Sukhova GH, Libby P, Lee RT (2000) Overexpression of eotaxin and the CCR3 receptor in human atherosclerosis: using genomic technology to identify a potential novel pathway of vascular inflammation. Circulation 102:2185–2189

    PubMed  CAS  Google Scholar 

  26. Geissmann F, Jung S, Littman DR (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19(1):71–82

    Article  PubMed  CAS  Google Scholar 

  27. Weber C, Zernecke A, Libby P (2008) The multifaceted contributions of leukocyte subsets to atherosclerosis: lessons from mouse models. Nat Rev Immunol 8:802–815

    Article  PubMed  CAS  Google Scholar 

  28. Woollard KJ, Geissmann F (2010) Monocytes in atherosclerosis: subsets and functions. Nat Rev Cardiol 7:77–86

    Article  PubMed  Google Scholar 

  29. Davi G, Patrono C (2007) Platelet activation and atherothrombosis. New Engl J Med 357:2482–2494

    Article  PubMed  CAS  Google Scholar 

  30. Huo Y, Schober A, Forlow SB, Smith DF, Hyman MC, Jung S, Littman DR, Weber C, Ley K (2003) Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat Med 9:61–67

    Article  PubMed  CAS  Google Scholar 

  31. Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352:1685–1695

    Article  PubMed  CAS  Google Scholar 

  32. Packard RR, Lichtman AH, Libby P (2009) Innate and adaptive immunity in atherosclerosis. Semin Immunopathol 31(1):5–22

    Article  PubMed  CAS  Google Scholar 

  33. Bobryshev YV (2005) Dendritic cells in atherosclerosis: current status of the problem and clinical relevance. Eur Heart J 26:1700–1704

    Article  PubMed  Google Scholar 

  34. Weis M, Schlichting CL, Engleman EG, Cooke JP (2002) Endothelial determinants of dendritic cell adhesion and migration: new implications for vascular diseases. Arterioscler Thromb Vasc Biol 22:1817–1823

    Article  PubMed  CAS  Google Scholar 

  35. Galkina E, Ley K (2009) Immune and inflammatory mechanisms of atherosclerosis. Annu Rev Immunol 27:165–197

    Article  PubMed  CAS  Google Scholar 

  36. Packard RR, Maganto-Garcia E, Gotsman I, Tabas I, Libby P, Lichtman AH (2008) CD11c(+) dendritic cells maintain antigen processing, presentation capabilities, and CD4(+) T-cell priming efficacy under hypercholesterolemic conditions associated with atherosclerosis. Circ Res 103:965–973

    Article  PubMed  CAS  Google Scholar 

  37. Soehnlein O, Zernecke A, Eriksson EE, Rothfuchs AG, Pham CT, Herwald H, Bidzhekov K, Rottenberg ME, Weber C, Lindbom L (2008) Neutrophil secretion products pave the way for inflammatory monocytes. Blood 112:1461–1471

    Article  PubMed  CAS  Google Scholar 

  38. Soehnlein O, Weber C, Lindbom L (2009) Neutrophil granule proteins tune monocytic cell function. Trends Immunol 30:538–546

    Article  PubMed  CAS  Google Scholar 

  39. Soehnlein O, Lindbom L, Weber C (2009) Mechanisms underlying neutrophil-mediated monocyte recruitment. Blood 114:4613–4623

    Article  PubMed  CAS  Google Scholar 

  40. Zernecke A, Bot I, Djalali-Talab Y et al (2008) Protective role of CXC receptor 4/CXC ligand 12 unveils the importance of neutrophils in atherosclerosis. Circ Res 102:209–217

    Article  PubMed  CAS  Google Scholar 

  41. Luxa CA, Koschinskib A, Derscha K, Husmanna M, Bhakdia S (2009) Hypersusceptibility of neutrophil granulocytes towards lethal action of free fatty acids contained in enzyme-modified atherogenic low density lipoprotein. Atherosclerosis 207:116–122

    Article  Google Scholar 

  42. Drechsler M, Megens RTA, van Zandvoort M, Weber C, Soehnlein O (2010) Hyperlipidemia-triggered neutrophilia promotes early atherosclerosis. Circulation 122:1837–1845

    Article  PubMed  CAS  Google Scholar 

  43. Baetta R, Corsini A (2010) Role of polymorphonuclear neutrophils in atherosclerosis: current state and future perspectives. Atherosclerosis 210:1–13

    Article  PubMed  CAS  Google Scholar 

  44. Lappalainen J, Lindstedt KA, Oksjoki R, Kovanen PT (2011) OxLDL-IgG immune complexes induce expression and secretion of proatherogenic cytokines by cultured human mast cells. Atherosclerosis 214(2):357–363

    Google Scholar 

  45. Kovanen PT (2009) Mast cells in atherogenesis: actions and reactions. Curr Atheroscler Rep 11:214–219

    Article  PubMed  CAS  Google Scholar 

  46. Tiwari RL, Singh V, Barthwal MK (2008) Macrophages: an elusive yet emerging therapeutic target of atherosclerosis. Med Res Rev 28:483–544

    Article  PubMed  CAS  Google Scholar 

  47. Velican C, Velican D (1985) Study of coronary intimal thickening. Atherosclerosis 56:331–344

    Article  PubMed  CAS  Google Scholar 

  48. Stary HC (2000) Natural history and histological classification of atherosclerotic lesions: an update. Arterioscler Thromb Vasc Biol 20:1177–1178

    Article  PubMed  CAS  Google Scholar 

  49. Tabas I, Tall A, Accili D (2010) The impact of macrophage insulin resistance on advanced atherosclerotic plaque progression. Circ Res 106:58–67

    Article  PubMed  CAS  Google Scholar 

  50. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM (2000) Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 20:1262–1275

    Article  PubMed  CAS  Google Scholar 

  51. Rudd JFH, Narula J, Strauss HW, Virmani R, Machac J, Klimas M et al (2010) Imaging atherosclerotic plaque inflammation by fluorodeoxyglucose with positron emission tomography. Ready for prime time? J Am Coll Cardiol 55:2527–2535

    Article  PubMed  Google Scholar 

  52. Kolodgie FD, Nakazawa G, Sangiorgi G, Ladich E, Burke AP, Virmani R (2007) Pathology of atherosclerosis and stenting. Neuroimaging Clin N Am 17(3):285–310

    Article  PubMed  Google Scholar 

  53. Watanabe M, Sangawa A, Sasaki Y, Yamashita M, Tanaka-Shintani M, Shintaku M, Ishikawa Y (2007) Distribution of inflammatory cells in adventitia changed with advancing atherosclerosis of human coronary artery. J Atheroscler Thromb 14:325–331

    Article  PubMed  Google Scholar 

  54. Langheinrich AC, Kampschulte M, Buch T, Bohle RM (2007) Vasa vasorum and atherosclerosis. Quid novi? Thromb Haemost 97:873–879

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maya Simionescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Simionescu, M., Sima, A.V. (2012). Morphology of Atherosclerotic Lesions. In: Wick, G., Grundtman, C. (eds) Inflammation and Atherosclerosis. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0338-8_2

Download citation

Publish with us

Policies and ethics