Skip to main content

NK/NKT Cells and Atherosclerosis

  • Chapter
  • First Online:
  • 1955 Accesses

Abstract

The immune response is operationally divided into the two arms of innate and adaptive immunity. The innate immune response is characterized by the involvement of a large variety of cells and mechanisms that have three important characteristics: (1) they are based on the recognition of defined patterns present in molecules of microbial origin, (2) they utilize receptors that have been selected by co-evolution of host and pathogen and not those which undergo gene rearrangements and selection during the developmental phases of the organism, and (3) they are ready to become activated and thus offer immediate reaction to invading pathogens, representing important first lines of defense. The innate immune system has been commonly considered to lack the capacity for immunological memory. Mechanisms of adaptive immune response, on the other hand, rely on use of gene rearrangement of receptors that recognize unique epitopes on individual molecules and are positively selected during development as well as during the response by the best fit with recognized antigen. Immunological memory is a hallmark of adaptive immunity. Both innate and adaptive immunity play important roles also in recognition of self-antigens and represent key players in the pathogenesis of chronic inflammatory and autoimmune diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersson J, Libby P, Hansson GK (2010) Adaptive immunity and atherosclerosis. Clin Immunol 134:33–46

    PubMed  CAS  Google Scholar 

  2. Curtiss LK, Kubo N, Schiller NK, Boisvert WA (2000) Participation of Innate and Acquired Immunity in Atherosclerosis. Immunol Res 21:167–176

    PubMed  CAS  Google Scholar 

  3. Packard RRS, Lichtman AH, Libby P (2009) Innate and adaptive immunity in atherosclerosis. Semin Immunopathol 31:5–22

    PubMed  CAS  Google Scholar 

  4. Farag SS, Caligiuri MA (2006) Human natural killer cell development and biology. Blood Rev 20:123–137

    PubMed  CAS  Google Scholar 

  5. Freud AG, Caligiuri MA (2006) Human natural killer cell development. Immunol Rev 214:56–72

    PubMed  CAS  Google Scholar 

  6. Yokoyama WM, Kim S, French AR (2004) The dynamic life of natural killer cells. Annu Rev Immunol 22:405–429

    PubMed  CAS  Google Scholar 

  7. Parham P, Abi-Rached L, Matevosyan L, Moesta AK, Norman PJ, Older Aguilar AM et al (2010) Primate-specific regulation of natural killer cells. J Med Primatol 39:194–212

    PubMed  CAS  Google Scholar 

  8. Vilches C, Parham P (2002) KIR: diverse, rapidly evolving receptors of innate and adaptive immunity. Annu Rev Immunol 20:217–251

    PubMed  CAS  Google Scholar 

  9. O’Connor GM, Hart OM, Gardiner CM (2006) Putting the natural killer cell in its place. Immunology 117:1–10

    PubMed  Google Scholar 

  10. Chan WL, Pejnovic N, Hamilton H, Liew TV, Popadic D, Poggi A et al (2005) Atherosclerotic abdominal aortic aneurysm and the interaction between autologous human plaque-derived vascular smooth muscle cells, type 1 NKT, and helper T cells. Circ Res 96:675–683

    PubMed  CAS  Google Scholar 

  11. Galkina E, Ley K (2007) Leukocyte influx in atherosclerosis. Curr Drug Targets 8:1239–1248

    PubMed  CAS  Google Scholar 

  12. Millonig G, Malcom GT, Wick G (2002) Early inflammatory-immunological lesions in juvenile atherosclerosis from the Pathobiological Determinants of Atherosclerosis in Youth (PDAY)-study. Atherosclerosis 160:441–448

    PubMed  CAS  Google Scholar 

  13. Plump AS, Smith JD, Hayek T, Aalto-Setälä K, Walsh A, Verstuyft JG et al (1992) Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71:343–353

    PubMed  CAS  Google Scholar 

  14. Breslow JL (1996) Mouse models of atherosclerosis. Science 272:685–688

    PubMed  CAS  Google Scholar 

  15. Ishibashi S, Goldstein JL, Brown MS, Herz J, Burns DK (1994) Massive xanthomatosis and atherosclerosis in cholesterol-fed low density lipoprotein receptor-negative mice. J Clin Invest 93:1885–1893

    PubMed  CAS  Google Scholar 

  16. Schiller NK, Boisvert WA, Curtiss LK (2002) Inflammation in atherosclerosis: lesion formation in LDL receptor-deficient mice with perforin and Lyst (beige) mutations. Arterioscler Thromb Vasc Biol 22:1341–1346

    PubMed  CAS  Google Scholar 

  17. Whitman SC, Rateri DL, Szilvassy SJ, Yokoyama W, Daugherty A (2004) Depletion of natural killer cell function decreases atherosclerosis in low-density lipoprotein receptor null mice. Arterioscler Thromb Vasc Biol 24:1049–1054

    PubMed  CAS  Google Scholar 

  18. Whitman SC, Ramsamy TA (2006) Participatory role of natural killer and natural killer T cells in atherosclerosis: lessons learned from in vivo mouse studies. Can J Phys Pharmacol 84:67–75

    CAS  Google Scholar 

  19. Galkina E, Ley K (2009) Immune and inflammatory mechanisms of atherosclerosis. Annu Rev Immunol 27:165–97

    PubMed  CAS  Google Scholar 

  20. Grossman WJ, Verbsky JW, Tollefsen BL, Kemper C, Atkinson JP, Ley TJ (2004) Differential expression of granzymes A and B in human cytotoxic lymphocyte subsets and T regulatory cells. Blood 104:2840–2848

    PubMed  CAS  Google Scholar 

  21. Jonasson L, Backteman K, Ernerudh J (2005) Loss of natural killer cell activity in patients with coronary artery disease. Atherosclerosis 183:316–321

    PubMed  CAS  Google Scholar 

  22. Li W, Johnson H, Yuan XM, Jonasson L (2009) 7beta-hydroxycholesterol induces natural killer cell death via oxidative lysosomal destabilization. Free Radic Res 43:1072–1079

    PubMed  CAS  Google Scholar 

  23. Matsuda JL, Gapin L, Fazilleau N, Warren K, Naidenko OV, Kronenberg M (2001) Natural killer T cells reactive to a single glycolipid exhibit a highly diverse T cell receptor beta repertoire and small clone size. Proc Natl Acad Sci U S A 98:12636–12641

    PubMed  CAS  Google Scholar 

  24. Godfrey DI, Stankovic S, Baxter AG (2010) Raising the NKT cell family. Nat Immunol 11:197–206

    PubMed  CAS  Google Scholar 

  25. Kobayashi E, Motoki K, Uchida T, Fukushima H, Koezuka Y (1995) KRN7000, a novel immunomodulator, and its antitumor activities. Oncol Res 7:529–534

    PubMed  CAS  Google Scholar 

  26. Dascher CC (2007) Evolutionary biology of CD1. Curr Top Microbiol Immunol 314:3–26

    PubMed  CAS  Google Scholar 

  27. McMichael AJ, Pilch JR, Galfre G, Mason DY, Fabre JW, Milstein C (1979) A human thymocyte antigen defined by a hybrid myeloma monoclonal antibody. Eur J Immunol 9:205–210

    PubMed  CAS  Google Scholar 

  28. Vincent MS, Gumperz JE, Brenner MB (2003) Understanding the function of CD1-restricted T cells. Nat Immunol 4:517–523

    PubMed  CAS  Google Scholar 

  29. De Libero G, Mori L (2005) Recognition of lipid antigens by T cells. Nat Rev Immunol 5:485–496

    PubMed  Google Scholar 

  30. Barral DC, Brenner MB (2007) CD1 antigen presentation: how it works. Nat Rev Immunol 7:929–941

    PubMed  CAS  Google Scholar 

  31. de la Salle H, Mariotti S, Angenieux C, Gilleron M, Garcia-Alles LF, Malm D et al (2005) Assistance of microbial glycolipid antigen processing by CD1e. Science 310:1321–1324

    PubMed  Google Scholar 

  32. Dougan SK, Kaser A, Blumberg RS (2007) CD1 expression on antigen-presenting cells. Curr Top Microbiol Immunol 314:113–141

    PubMed  CAS  Google Scholar 

  33. Exley M, Garcia J, Wilson SB, Spada F, Gerdes D, Tahir SM et al (2000) CD1d structure and regulation on human thymocytes, peripheral blood T cells, B cells and monocytes. Immunology 100:37–47

    PubMed  CAS  Google Scholar 

  34. Melian A, Geng YJ, Sukhova GK, Libby P, Porcelli SA (1999) CD1 expression in human atherosclerosis. A potential mechanism for T cell activation by foam cells. Am J Pathol 155:775–786

    PubMed  CAS  Google Scholar 

  35. Canchis PW, Bhan AK, Landau SB, Yang L, Balk SP, Blumberg RS (1993) Tissue distribution of the non-polymorphic major histocompatibility complex class I-like molecule, CD1d. Immunology 80:561–565

    PubMed  CAS  Google Scholar 

  36. Kyriakakis E, Cavallari M, Andert J, Philippova M, Koella C, Bochkov V et al (2010) Invariant natural killer T cells: Linking inflammation and neovascularization in human atherosclerosis. Eur J Immunol 40:3268–3279

    PubMed  CAS  Google Scholar 

  37. Borg NA, Wun KS, Kjer-Nielsen L, Wilce MC, Pellicci DG, Koh R et al (2007) CD1d-lipid-antigen recognition by the semi-invariant NKT T-cell receptor. Nature 448:44–49

    PubMed  CAS  Google Scholar 

  38. De Libero G, Mori L (2010) How the immune system detects lipid antigens. Prog Lipid Res 49:120–127

    PubMed  Google Scholar 

  39. Moody DB, Zajonc DM, Wilson IA (2005) Anatomy of CD1-lipid antigen complexes. Nat Rev Immunol 5:387–399

    PubMed  CAS  Google Scholar 

  40. Skålén K, Gustafsson M, Rydberg EK, Hultén LM, Wiklund O, Innerarity TL et al (2002) Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature 417:750–754

    PubMed  Google Scholar 

  41. Libby P, Okamoto Y, Rocha VZ, Folco E (2010) Inflammation in atherosclerosis: transition from theory to practice. Circ J 74:213–220

    PubMed  CAS  Google Scholar 

  42. van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9:112–124

    PubMed  Google Scholar 

  43. Rocha VZ, Libby P (2008) The multiple facets of the fat tissue. Thyroid 18:175–183

    PubMed  Google Scholar 

  44. Hong C, Tontonoz P (2008) Coordination of inflammation and metabolism by PPAR and LXR nuclear receptors. Curr Opin Genet Dev 18:461–467

    PubMed  CAS  Google Scholar 

  45. Madrazo JA, Kelly DP (2008) The PPAR trio: regulators of myocardial energy metabolism in health and disease. J Mol Cell Cardiol 44:968–975

    PubMed  CAS  Google Scholar 

  46. van Bilsen M, van Nieuwenhoven FA (2010) PPARs as therapeutic targets in cardiovascular disease. Expert Opin Ther Targets 14:1029–1045

    PubMed  Google Scholar 

  47. Neve BP, Fruchart JC, Staels B (2000) Role of the peroxisome proliferator-activated receptors (PPAR) in atherosclerosis. Biochem Pharmacol 60:1245–1250

    PubMed  CAS  Google Scholar 

  48. Srivastava RAK (2011) Evaluation of anti-atherosclerotic activities of PPAR-α, PPAR-γ, and LXR agonists in hyperlipidemic atherosclerosis-susceptible F(1)B hamsters. Atherosclerosis 214:86–93

    PubMed  CAS  Google Scholar 

  49. Gogolak P, Rethi B, Szatmari I, Lanyi A, Dezso B, Nagy L et al (2007) Differentiation of CD1a− and CD1a+ monocyte-derived dendritic cells is biased by lipid environment and PPARgamma. Blood 109:643–652

    PubMed  CAS  Google Scholar 

  50. Szatmari I, Pap A, Rühl R, Ma J-X, Illarionov PA, Besra GS et al (2006) PPARgamma controls CD1d expression by turning on retinoic acid synthesis in developing human dendritic cells. J Exp Med 203:2351–2362

    PubMed  CAS  Google Scholar 

  51. Szatmari I, Gogolak P, Im JS, Dezso B, Rajnavolgyi E, Nagy L (2004) Activation of PPARgamma specifies a dendritic cell subtype capable of enhanced induction of iNKT cell expansion. Immunity 21:95–106

    PubMed  CAS  Google Scholar 

  52. Chung JH, Seo AY, Chung SW, Kim MK, Leeuwenburgh C, Yu BP et al (2008) Molecular mechanism of PPAR in the regulation of age-related inflammation. Ageing Res Rev 7:126–136

    PubMed  CAS  Google Scholar 

  53. Abbott BD (2009) Review of the expression of peroxisome proliferator-activated receptors alpha (PPAR alpha), beta (PPAR beta), and gamma (PPAR gamma) in rodent and human development. Reprod Toxicol 27:246–257

    PubMed  CAS  Google Scholar 

  54. Libby P (2005) The forgotten majority: unfinished business in cardiovascular risk reduction. J Am Coll Cardiol 46:1225–1228

    PubMed  Google Scholar 

  55. Khan MA, Gallo RM, Renukaradhya GJ, Du W, Gervay-Hague J, Brutkiewicz RR (2009) Statins impair CD1d-mediated antigen presentation through the inhibition of prenylation. J Immunol 182:4744–4750

    PubMed  CAS  Google Scholar 

  56. Gober H-J, Kistowska M, Angman L, Jenö P, Mori L, De Libero G (2003) Human T cell receptor gammadelta cells recognize endogenous mevalonate metabolites in tumor cells. J Exp Med 197:163–168

    PubMed  CAS  Google Scholar 

  57. Kleindienst R, Xu Q, Willeit J, Waldenberger FR, Weimann S, Wick G (1993) Immunology of atherosclerosis. Demonstration of heat shock protein 60 expression and T lymphocytes bearing alpha/beta or gamma/delta receptor in human atherosclerotic lesions. Am J Pathol 142:1927–1937

    PubMed  CAS  Google Scholar 

  58. Kistowska M, Rossy E, Sansano S, Gober H-J, Landmann R, Mori L et al (2008) Dysregulation of the host mevalonate pathway during early bacterial infection activates human TCR gamma delta cells. Eur J Immunol 38:2200–2209

    PubMed  CAS  Google Scholar 

  59. De Libero G, Collmann A, Mori L (2009) The cellular and biochemical rules of lipid antigen presentation. Eur J Immunol 39:2648–2656

    PubMed  Google Scholar 

  60. Major AS, Wilson MT, McCaleb JL, Ru Su Y, Stanic AK, Joyce S et al (2004) Quantitative and qualitative differences in proatherogenic NKT cells in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 24:2351–2357

    PubMed  CAS  Google Scholar 

  61. Nakai Y, Iwabuchi K, Fujii S, Ishimori N, Dashtsoodol N, Watano K et al (2004) Natural killer T cells accelerate atherogenesis in mice. Blood 104:2051–2059

    PubMed  CAS  Google Scholar 

  62. Paulsson G, Zhou X, Tornquist E, Hansson GK (2000) Oligoclonal T cell expansions in atherosclerotic lesions of apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 20:10–17

    PubMed  CAS  Google Scholar 

  63. Tupin E, Nicoletti A, Elhage R, Rudling M, Ljunggren H-G, Hansson GK et al (2004) CD1d-dependent activation of NKT cells aggravates atherosclerosis. J Exp Med 199:417–422

    PubMed  CAS  Google Scholar 

  64. Aslanian AM, Chapman HA, Charo IF (2005) Transient role for CD1d-restricted natural killer T cells in the formation of atherosclerotic lesions. Arterioscler Thromb Vasc Biol 25:628–632

    PubMed  CAS  Google Scholar 

  65. Rogers L, Burchat S, Gage J, Hasu M, Thabet M, Willcox L et al (2008) Deficiency of invariant V alpha 14 natural killer T cells decreases atherosclerosis in LDL receptor null mice. Cardiovasc Res 78:167–174

    PubMed  CAS  Google Scholar 

  66. VanderLaan PA, Reardon CA, Sagiv Y, Blachowicz L, Lukens J, Nissenbaum M et al (2007) Characterization of the natural killer T-cell response in an adoptive transfer model of atherosclerosis. Am J Pathol 170:1100–1107

    PubMed  CAS  Google Scholar 

  67. van Puijvelde GHM, van Wanrooij EJA, Hauer AD, de Vos P, van Berkel TJC, Kuiper J (2009) Effect of natural killer T cell activation on the initiation of atherosclerosis. Thromb Haemost 102:223–230

    PubMed  Google Scholar 

  68. Wei B, Wingender G, Fujiwara D, Chen DY, McPherson M, Brewer S et al (2010) Commensal microbiota and CD8+ T cells shape the formation of invariant NKT cells. J Immunol 184:1218–1226

    PubMed  CAS  Google Scholar 

  69. To K, Agrotis A, Besra G, Bobik A, Toh B-H (2009) NKT cell subsets mediate differential proatherogenic effects in ApoE−/− mice. Arterioscler Thromb Vasc Biol 29:671–677

    PubMed  CAS  Google Scholar 

  70. Braun NA, Covarrubias R, Major AS (2010) Natural killer T cells and atherosclerosis: form and function meet pathogenesis. J Innate Immun 2:316–324

    PubMed  CAS  Google Scholar 

  71. Kim D-H, Chang W-S, Lee Y-S, Lee K-A, Kim Y-K, Kwon BS et al (2008) 4-1BB engagement costimulates NKT cell activation and exacerbates NKT cell ligand-induced airway hyperresponsiveness and inflammation. J Immunol 180:2062–2068

    PubMed  CAS  Google Scholar 

  72. Olofsson PS, Söderström LA, Wågsäter D, Sheikine Y, Ocaya P, Lang F et al (2008) CD137 is expressed in human atherosclerosis and promotes development of plaque inflammation in hypercholesterolemic mice. Circulation 117:1292–1301

    PubMed  CAS  Google Scholar 

  73. Vinay DS, Choi BK, Bae JS, Kim WY, Gebhardt BM, Kwon BS (2004) CD137-deficient mice have reduced NK/NKT cell numbers and function, are resistant to lipopolysaccharide-induced shock syndromes, and have lower IL-4 responses. J Immunol 173:4218–4229

    PubMed  CAS  Google Scholar 

  74. Teng MWL, Sharkey J, McLaughlin NM, Exley MA, Smyth MJ (2009) CD1d-based combination therapy eradicates established tumors in mice. J Immunol 183:1911–1920

    PubMed  CAS  Google Scholar 

  75. Ley K, Laudanna C, Cybulsky MI, Nourshargh S (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7:678–689

    PubMed  CAS  Google Scholar 

  76. Luster AD, Alon R, von Andrian UH (2005) Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol 6:1182–1190

    PubMed  CAS  Google Scholar 

  77. Franitza S, Grabovsky V, Wald O, Weiss I, Beider K, Dagan M et al (2004) Differential usage of VLA-4 and CXCR4 by CD3+CD56+ NKT cells and CD56+CD16+ NK cells regulates their interaction with endothelial cells. Eur J Immunol 34:1333–1341

    PubMed  CAS  Google Scholar 

  78. Noda M, Omatsu Y, Sugiyama T, Oishi S, Fujii N, Nagasawa T (2011) CXCL12-CXCR4 chemokine signaling is essential for NK cell development in adult mice. Blood 117:451–458

    PubMed  CAS  Google Scholar 

  79. Cybulsky MI, Gimbrone MA (1991) Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science 251:788–791

    PubMed  CAS  Google Scholar 

  80. Libby P (2008) Role of inflammation in atherosclerosis associated with rheumatoid arthritis. Am J Med 121:S21–S31

    PubMed  CAS  Google Scholar 

  81. Zhang SH, Reddick RL, Piedrahita JA, Maeda N (1992) Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 258:468–471

    PubMed  CAS  Google Scholar 

  82. Ohta H, Wada H, Niwa T, Kirii H, Iwamoto N, Fujii H et al (2005) Disruption of tumor necrosis factor-alpha gene diminishes the development of atherosclerosis in ApoE-deficient mice. Atherosclerosis 180:11–17

    PubMed  CAS  Google Scholar 

  83. Zernecke A, Shagdarsuren E, Weber C (2008) Chemokines in atherosclerosis: an update. Arterioscler Thromb Vasc Biol 28:1897–1908

    PubMed  CAS  Google Scholar 

  84. Maghazachi AA (2010) Role of chemokines in the biology of natural killer cells. Curr Top Microbiol Immunol 341:37–58

    PubMed  CAS  Google Scholar 

  85. Gu L, Okada Y, Clinton SK, Gerard C, Sukhova GK, Libby P et al (1998) Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol Cell 2:275–281

    PubMed  CAS  Google Scholar 

  86. Boring L, Gosling J, Cleary M, Charo IF (1998) Decreased lesion formation in CCR2−/− mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 394:894–897

    PubMed  CAS  Google Scholar 

  87. Hiraoka M, Nitta N, Nagai M, Shimokado K, Yoshida M (2004) MCP-1-induced enhancement of THP-1 adhesion to vascular endothelium was modulated by HMG-CoA reductase inhibitor through RhoA GTPase-, but not ERK1/2-dependent pathway. Life Sci 75:1333–1341

    PubMed  CAS  Google Scholar 

  88. Geiben-Lynn R, Greenland JR, Frimpong-Boateng K, Letvin NL (2009) Non-classical natural killer T cells modulate plasmid DNA vaccine antigen expression and vaccine-elicited immune responses by MCP-1 secretion after interaction with a beta2-microglobulin-independent CD1d. J Biol Chem 284:33800–33806

    PubMed  CAS  Google Scholar 

  89. Sheikine Y, Sirsjö A (2008) CXCL16/SR-PSOX–a friend or a foe in atherosclerosis? Atherosclerosis 197:487–495

    PubMed  CAS  Google Scholar 

  90. Lundberg GA, Kellin A, Samnegård A, Lundman P, Tornvall P, Dimmeler S et al (2005) Severity of coronary artery stenosis is associated with a polymorphism in the CXCL16/SR-PSOX gene. J Intern Med 257:415–422

    PubMed  CAS  Google Scholar 

  91. Aslanian AM, Charo IF (2006) Targeted disruption of the scavenger receptor and chemokine CXCL16 accelerates atherosclerosis. Circulation 114:583–590

    PubMed  CAS  Google Scholar 

  92. Galkina E, Harry BL, Ludwig A, Liehn EA, Sanders JM, Bruce A et al (2007) CXCR6 promotes atherosclerosis by supporting T-cell homing, interferon-gamma production, and macrophage accumulation in the aortic wall. Circulation 116:1801–1811

    PubMed  CAS  Google Scholar 

  93. Petit SJ, Chayen NE, Pease JE (2008) Site-directed mutagenesis of the chemokine receptor CXCR6 suggests a novel paradigm for interactions with the ligand CXCL16. Eur J Immunol 38:2337–2350

    PubMed  CAS  Google Scholar 

  94. Barlic J, Zhu W, Murphy PM (2009) Atherogenic lipids induce high-density lipoprotein uptake and cholesterol efflux in human macrophages by up-regulating transmembrane chemokine CXCL16 without engaging CXCL16-dependent cell adhesion. J Immunol 182:7928–7936

    PubMed  CAS  Google Scholar 

  95. Johnston B, Kim CH, Soler D, Emoto M, Butcher EC (2003) Differential chemokine responses and homing patterns of murine TCR alpha beta NKT cell subsets. J Immunol 171:2960–2969

    PubMed  CAS  Google Scholar 

  96. Germanov E, Veinotte L, Cullen R, Chamberlain E, Butcher EC, Johnston B (2008) Critical role for the chemokine receptor CXCR6 in homeostasis and activation of CD1d-restricted NKT cells. J Immunol 181:81–91

    PubMed  CAS  Google Scholar 

  97. Shimaoka T, K-i S, Kume N, Minami M, Nishime C, Suematsu M et al (2007) Critical role for CXC chemokine ligand 16 (SR-PSOX) in Th1 response mediated by NKT cells. J Immunol 179:8172–8179

    PubMed  CAS  Google Scholar 

  98. Kim CH, Johnston B, Butcher EC (2002) Trafficking machinery of NKT cells: shared and differential chemokine receptor expression among V alpha 24(+)V beta 11(+) NKT cell subsets with distinct cytokine-producing capacity. Blood 100:11–16

    PubMed  CAS  Google Scholar 

  99. Thomas SY, Hou R, Boyson JE, Means TK, Hess C, Olson DP et al (2003) CD1d-restricted NKT cells express a chemokine receptor profile indicative of Th1-type inflammatory homing cells. J Immunol 171:2571–2580

    PubMed  CAS  Google Scholar 

  100. Sheikh AM, Ochi H, Manabe A, Masuda J (2005) Lysophosphatidylcholine posttranscriptionally inhibits interferon-gamma-induced IP-10, Mig and I-Tac expression in endothelial cells. Cardiovasc Res 65:263–271

    PubMed  Google Scholar 

  101. Rajavashisth T, Qiao JH, Tripathi S, Tripathi J, Mishra N, Hua M et al (1998) Heterozygous osteopetrotic (op) mutation reduces atherosclerosis in LDL receptor- deficient mice. J Clin Invest 101:2702–2710

    PubMed  CAS  Google Scholar 

  102. Boisvert WA, Santiago R, Curtiss LK, Terkeltaub RA (1998) A leukocyte homologue of the IL-8 receptor CXCR-2 mediates the accumulation of macrophages in atherosclerotic lesions of LDL receptor-deficient mice. J Clin Invest 101:353–363

    PubMed  CAS  Google Scholar 

  103. Singer M, Sansonetti PJ (2004) IL-8 is a key chemokine regulating neutrophil recruitment in a new mouse model of Shigella-induced colitis. J Immunol 173:4197–4206

    PubMed  CAS  Google Scholar 

  104. Faunce DE, Sonoda KH, Stein-Streilein J (2001) MIP-2 recruits NKT cells to the spleen during tolerance induction. J Immunol 166:313–321

    PubMed  CAS  Google Scholar 

  105. Reape TJ, Groot PH (1999) Chemokines and atherosclerosis. Atherosclerosis 147:213–225

    PubMed  CAS  Google Scholar 

  106. Apostolopoulos J, Davenport P, Tipping PG (1996) Interleukin-8 production by macrophages from atheromatous plaques. Arterioscler Thromb Vasc Biol 16:1007–1012

    PubMed  CAS  Google Scholar 

  107. Simonini A, Moscucci M, Muller DW, Bates ER, Pagani FD, Burdick MD et al (2000) IL-8 is an angiogenic factor in human coronary atherectomy tissue. Circulation 101:1519–1526

    PubMed  CAS  Google Scholar 

  108. Wang N, Tabas I, Winchester R, Ravalli S, Rabbani LE, Tall A (1996) Interleukin 8 is induced by cholesterol loading of macrophages and expressed by macrophage foam cells in human atheroma. J Biol Chem 271:8837–8842

    PubMed  CAS  Google Scholar 

  109. Terkeltaub R, Banka CL, Solan J, Santoro D, Brand K, Curtiss LK (1994) Oxidized LDL induces monocytic cell expression of interleukin-8, a chemokine with T-lymphocyte chemotactic activity. Arterioscler Thromb 14:47–53

    PubMed  CAS  Google Scholar 

  110. Gerszten RE, Garcia-Zepeda EA, Lim YC, Yoshida M, Ding HA, Gimbrone MA et al (1999) MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature 398:718–723

    PubMed  CAS  Google Scholar 

  111. Yue TL, Wang X, Sung CP, Olson B, McKenna PJ, Gu JL et al (1994) Interleukin-8. A mitogen and chemoattractant for vascular smooth muscle cells. Circ Res 75:1–7

    PubMed  CAS  Google Scholar 

  112. Hess C, Means TK, Autissier P, Woodberry T, Altfeld M, Addo MM et al (2004) IL-8 responsiveness defines a subset of CD8 T cells poised to kill. Blood 104:3463–3471

    PubMed  CAS  Google Scholar 

  113. Libby P (2002) Inflammation in atherosclerosis. Nature 420:868–874

    PubMed  CAS  Google Scholar 

  114. Major AS, Joyce S, Van Kaer L (2006) Lipid metabolism, atherogenesis and CD1-restricted antigen presentation. Trends Mol Med 12:270–278

    PubMed  CAS  Google Scholar 

  115. Lo JC, Wang Y, Tumanov AV, Bamji M, Yao Z, Reardon CA et al (2007) Lymphotoxin beta receptor-dependent control of lipid homeostasis. Science 316:285–288

    PubMed  CAS  Google Scholar 

  116. Yasuda T, Ishida T, Rader DJ (2010) Update on the role of endothelial lipase in high-density lipoprotein metabolism, reverse cholesterol transport, and atherosclerosis. Circ J 74:2263–2270

    PubMed  CAS  Google Scholar 

  117. Azumi H, Hirata K-i, Ishida T, Kojima Y, Rikitake Y, Takeuchi S et al (2003) Immunohistochemical localization of endothelial cell-derived lipase in atherosclerotic human coronary arteries. Cardiovasc Res 58:647–654

    PubMed  CAS  Google Scholar 

  118. Musunuru K, Pirruccello JP, Do R, Peloso GM, Guiducci C, Sougnez C et al (2010) Exome Sequencing, ANGPTL3 Mutations, and Familial Combined Hypolipidemia. N Engl J Med 363:2220–2227

    PubMed  CAS  Google Scholar 

  119. Koishi R, Ando Y, Ono M, Shimamura M, Yasumo H, Fujiwara T et al (2002) Angptl3 regulates lipid metabolism in mice. Nat Genet 30:151–157

    PubMed  CAS  Google Scholar 

  120. Köster A, Chao YB, Mosior M, Ford A, Gonzalez-DeWhitt PA, Hale JE et al (2005) Transgenic angiopoietin-like (angptl) 4 overexpression and targeted disruption of angptl4 and angptl3: regulation of triglyceride metabolism. Endocrinology 146:4943–4950

    PubMed  Google Scholar 

  121. Ando Y, Shimizugawa T, Takeshita S, Ono M, Shimamura M, Koishi R et al (2003) A decreased expression of angiopoietin-like 3 is protective against atherosclerosis in apoE-deficient mice. J Lipid Res 44:1216–1223

    PubMed  CAS  Google Scholar 

  122. Lee E-C, Desai U, Gololobov G, Hong S, Feng X, Yu X-C et al (2009) Identification of a new functional domain in angiopoietin-like 3 (ANGPTL3) and angiopoietin-like 4 (ANGPTL4) involved in binding and inhibition of lipoprotein lipase (LPL). J Biol Chem 284:13735–13745

    PubMed  CAS  Google Scholar 

  123. Jin W, Wang X, Millar JS, Quertermous T, Rothblat GH, Glick JM et al (2007) Hepatic proprotein convertases modulate HDL metabolism. Cell Metab 6:129–136

    PubMed  Google Scholar 

  124. Shimamura M, Matsuda M, Yasumo H, Okazaki M, Fujimoto K, Kono K et al (2007) Angiopoietin-like protein3 regulates plasma HDL cholesterol through suppression of endothelial lipase. Arterioscler Thromb Vasc Biol 27:366–372

    PubMed  CAS  Google Scholar 

  125. Shimizugawa T, Ono M, Shimamura M, Yoshida K, Ando Y, Koishi R et al (2002) ANGPTL3 decreases very low density lipoprotein triglyceride clearance by inhibition of lipoprotein lipase. J Biol Chem 277:33742–33748

    PubMed  CAS  Google Scholar 

  126. Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M et al (2010) Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466:707–713

    PubMed  CAS  Google Scholar 

  127. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444:860–867

    PubMed  CAS  Google Scholar 

  128. Croft M (2010) Control of immunity by the TNFR-related molecule OX40 (CD134). Annu Rev Immunol 28:57–78

    PubMed  CAS  Google Scholar 

  129. Mach F, Schönbeck U, Sukhova GK, Atkinson E, Libby P (1998) Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature 394:200–203

    PubMed  CAS  Google Scholar 

  130. Wang X, Ria M, Kelmenson PM, Eriksson P, Higgins DC, Samnegård A et al (2005) Positional identification of TNFSF4, encoding OX40 ligand, as a gene that influences atherosclerosis susceptibility. Nat Genet 37:365–372

    PubMed  CAS  Google Scholar 

  131. van Wanrooij EJA, van Puijvelde GHM, de Vos P, Yagita H, van Berkel TJC, Kuiper J (2007) Interruption of the Tnfrsf4/Tnfsf4 (OX40/OX40L) pathway attenuates atherogenesis in low-density lipoprotein receptor-deficient mice. Arterioscler Thromb Vasc Biol 27:204–210

    PubMed  Google Scholar 

  132. Damayanti T, Kikuchi T, Zaini J, Daito H, Kanehira M, Kohu K et al (2010) Serial OX40 engagement on CD4+ T cells and natural killer T cells causes allergic airway inflammation. Am J Respir Crit Care Med 181:688–698

    PubMed  CAS  Google Scholar 

  133. Zaini J, Andarini S, Tahara M, Saijo Y, Ishii N, Kawakami K et al (2007) OX40 ligand expressed by DCs costimulates NKT and CD4+ Th cell antitumor immunity in mice. J Clin Invest 117:3330–3338

    PubMed  CAS  Google Scholar 

  134. Zhou D (2007) OX40 signaling directly triggers the antitumor effects of NKT cells. J Clin Invest 117:3169–3172

    PubMed  CAS  Google Scholar 

  135. Falschlehner C, Schaefer U, Walczak H (2009) Following TRAIL’s path in the immune system. Immunology 127:145–154

    PubMed  CAS  Google Scholar 

  136. Kavurma MM, Bennett MR (2008) Expression, regulation and function of trail in atherosclerosis. Biochem Pharmacol 75:1441–1450

    PubMed  CAS  Google Scholar 

  137. Volpato S, Ferrucci L, Secchiero P, Corallini F, Zuliani G, Fellin R et al (2010) Association of tumor necrosis factor-related apoptosis-inducing ligand with total and cardiovascular mortality in older adults. Atherosclerosis. doi:10.1016/j.atherosclerosis.2010.11.004

  138. Beraza N, Malato Y, Sander LE, Al-Masaoudi M, Freimuth J, Riethmacher D et al (2009) Hepatocyte-specific NEMO deletion promotes NK/NKT cell- and TRAIL-dependent liver damage. J Exp Med 206:1727–1737

    PubMed  CAS  Google Scholar 

  139. Sato K, Nuki T, Gomita K, Weyand CM, Hagiwara N (2010) Statins reduce endothelial cell apoptosis via inhibition of TRAIL expression on activated CD4 T cells in acute coronary syndrome. Atherosclerosis 213:33–39

    PubMed  CAS  Google Scholar 

  140. Takami Y, Nakagami H, Morishita R, Katsuya T, Hayashi H, Mori M et al (2008) Potential role of CYLD (Cylindromatosis) as a deubiquitinating enzyme in vascular cells. Am J Pathol 172:818–829

    PubMed  CAS  Google Scholar 

  141. Herrmann J, Lerman LO, Lerman A (2010) On to the road to degradation: atherosclerosis and the proteasome. Cardiovasc Res 85:291–302

    PubMed  CAS  Google Scholar 

  142. Lee AJ, Zhou X, Chang M, Hunzeker J, Bonneau RH, Zhou D et al (2010) Regulation of natural killer T-cell development by deubiquitinase CYLD. EMBO J 29:1600–1612

    PubMed  CAS  Google Scholar 

  143. Kaneda H, Takeda K, Ota T, Kaduka Y, Akiba H, Ikarashi Y et al (2005) ICOS costimulates invariant NKT cell activation. Biochem Biophys Res Commun 327:201–207

    PubMed  CAS  Google Scholar 

  144. Akbari O, Stock P, Meyer EH, Freeman GJ, Sharpe AH, Umetsu DT et al (2008) ICOS/ICOSL interaction is required for CD4+ invariant NKT cell function and homeostatic survival. J Immunol 180:5448–5456

    PubMed  CAS  Google Scholar 

  145. Gotsman I, Grabie N, Gupta R, Dacosta R, MacConmara M, Lederer J et al (2006) Impaired regulatory T-cell response and enhanced atherosclerosis in the absence of inducible costimulatory molecule. Circulation 114:2047–2055

    PubMed  CAS  Google Scholar 

  146. Habets KLL, van Puijvelde GHM, van Duivenvoorde LM, van Wanrooij EJA, de Vos P, Tervaert J-WC et al (2010) Vaccination using oxidized low-density lipoprotein-pulsed dendritic cells reduces atherosclerosis in LDL receptor-deficient mice. Cardiovasc Res 85:622–630

    PubMed  CAS  Google Scholar 

  147. Freigang S, Hörkkö S, Miller E, Witztum JL, Palinski W (1998) Immunization of LDL receptor-deficient mice with homologous malondialdehyde-modified and native LDL reduces progression of atherosclerosis by mechanisms other than induction of high titers of antibodies to oxidative neoepitopes. Arterioscler Thromb Vasc Biol 18:1972–1982

    PubMed  CAS  Google Scholar 

  148. Zhou X, Paulsson G, Stemme S, Hansson GK (1998) Hypercholesterolemia is associated with a T helper (Th) 1/Th2 switch of the autoimmune response in atherosclerotic apo E-knockout mice. J Clin Invest 101:1717–1725

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennaro De Libero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Cavallari, M., Resink, T.J., De Libero, G. (2012). NK/NKT Cells and Atherosclerosis. In: Wick, G., Grundtman, C. (eds) Inflammation and Atherosclerosis. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0338-8_16

Download citation

Publish with us

Policies and ethics