Skip to main content

Dynamics of Tissue Heat Tolerance and Thermotolerance of PS II in Alpine Plants

  • Chapter
  • First Online:
Plants in Alpine Regions

Abstract

At first sight heat may not be expected to be an environmental constraint of significant importance in alpine environments, as low atmospheric temperatures are among the well-known common features of the alpine macroclimate (see Körner 2003). Although atmospheric temperatures are low, alpine plants – due to their small, prostrate growth form – often grow very close to the soil surface and can be surrounded by bare soil, causing a decoupling from ambient air temperature. In addition, the decoupling effect is promoted by an appropriate protection from cooling winds, a favourable slope, and exposure to the usually increased solar irradiation at high altitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexandrov VY (1977) Cells, molecules and temperature, vol 21, Ecological studies. Springer, New York

    Google Scholar 

  • Bannister P (1970) The annual course of drought and heat resistance in heath plants from an oceanic environment. Flora 159:105–193

    Google Scholar 

  • Beniston M, Diaz HF, Bradley RS (1997) Climate change at high elevation sites: an overview. Climatic Change 36:233–251

    Article  Google Scholar 

  • Bertin RI (2008) Plant phenology and distribution in relation to recent climate change. J Torrey Bot Soc 135:126–146

    Article  Google Scholar 

  • Biebl R (1968) Über Wärmehaushalt und Temperaturresistenz arktischer Pflanzen in Westgrönland. Flora 157:327–354

    Google Scholar 

  • Biebl R, Maier R (1969) Tageslänge und Temperaturresistenz. Österr Bot 117:176–194

    Article  Google Scholar 

  • Bilger H-W, Schreiber U, Lange OL (1984) Determination of leaf heat resistance: comparative investigation of chlorophyll fluorescence changes and tissue necrosis methods. Oecologia 63:256–262

    Article  Google Scholar 

  • Bilger W, Schreiber U, Lange OL (1987) Chlorophyll fluorescence as an indicator of heat induced limitation of photosynthesis in Arbutus unedo L. In: Tenhunen JD, Catarino FM, Lange OL, Oechl WC (eds) Plant responses to stress. Springer, Berlin, pp 391–399

    Google Scholar 

  • Böhm R, Auer I, Brunetti M, Maugeri M, Nanni T, Schöner W (2001) Regional temperature variability in the European Alps: 1760–1998 from homogenized instrumental time series. Int J Climatol 21:1779–1801

    Article  Google Scholar 

  • Braun V, Buchner O, Neuner G (2002) Thermotolerance of photosystem 2 of three alpine plant species under field conditions. Photosynthetica 40(4):587–595

    Article  CAS  Google Scholar 

  • Buchner O, Neuner G (2001) Determination of heat tolerance: a new equipment for field measurements. J Appl Bot 75(3–4):130–137

    Google Scholar 

  • Buchner O, Neuner G (2003) Variability of heat tolerance in alpine plant species measured at different altitudes. Arct Antarct Alp Res 35(4):411–420

    Article  Google Scholar 

  • Büntgen U, Frank DC, Niedergelt D, Esper J (2006) Summer temperature variations in the European Alps, A.D. 755–2004. J Climate 19(21):5606–5623

    Article  Google Scholar 

  • Cannone N, Sgorbati S, Guglielmin M (2007) Unexpected impacts of climate change on alpine vegetation. Front Ecol Environ 5(7):360–364

    Article  Google Scholar 

  • Cannone N, Diolaiuti G, Guglielmin M, Smiraglia C (2008) Accelerating climate change impacts on alpine glacier forefield ecosystems in the European Alps. Ecol Appl 18(3):637–648

    Article  PubMed  Google Scholar 

  • Casty C, Wanner H, Luterbacher J, Esper J, Böhm R (2005) Temperature and precipitation variability in the European Alps since 1500. Int J Climatol 15:1855–1880

    Article  Google Scholar 

  • Epron D (1997) Effects of drought on photosynthesis and on the thermotolerance of photosystem II in seedlings of cedar (Cedrus atlantica and C. libani). J Exp Bot 48(10):1835–1841

    Article  CAS  Google Scholar 

  • Erschbamer B, Niederfriniger-Schlag R, Winkler E (2008) Colonization processes on a central Alpine glacier foreland. J Veg Sci 19(6):855–862

    Article  Google Scholar 

  • Falkova TV (1973) Seasonal changes of thermoresistance of higher plants cells under the conditions of the Mediterranean type subtropics. Bot Zeit 58:1424–1438

    Google Scholar 

  • Froux F, Ducrey M, Epron D, Dreyer E (2004) Seasonal variations and acclimation potential of the thermostability of photochemistry in four Mediterranean conifers. Ann For Sci 61:235–241

    Article  CAS  Google Scholar 

  • Gauslaa Y (1984) Heat resistance and energy budget in different Scandinavian plants. Hol Ecol 7:1–78

    Google Scholar 

  • Grabherr G, Gottfried M, Pauli H (1994) Climate effects on mountain plants. Nature 369:448

    Article  Google Scholar 

  • Hamerlynck EP, Huxman TE, Loik ME, Smith SD (2000) Effects of extreme high temperature, drought and elevated CO2 on photosynthesis of the Mojave desert evergreen shrub, Larrea tridentata. Plant Ecol 148(2):183–193

    Article  Google Scholar 

  • Havaux M (1992) Stress tolerance of photosystem II in vivo. Antagonistic effects of water, heat, and photoinhibition stresses. Plant Physiol 100:424–432

    Article  PubMed  CAS  Google Scholar 

  • Havaux M (1993) Rapid photosynthetic adaptation to heat stress triggered in potato leaves by moderately elevated temperatures. Plant Cell Environ 16:461–467

    Article  Google Scholar 

  • Havaux M, Strasser RJ (1992) Dynamics of electron transfer within and between PS II reaction center complexes indicated by the light-saturation curve of in vivo variable chlorophyll emission. Photosynth Res 31:149–156

    Article  CAS  Google Scholar 

  • Havaux M, Tardy F (1996) Temperature-dependent adjustment of the thermal stability of photosystem II in vivo: possible involvement of xanthophyll-cycle pigments. Planta 198:324–333

    Article  CAS  Google Scholar 

  • Holzinger B, Hülber K, Camenisch M, Grabherr G (2008) Changes in plant species richness over the last century in the eastern Swiss Alps: elevational gradient, bedrock effects and migration rates. Plant Ecol 195:179–196

    Article  Google Scholar 

  • Huxman TE, Hamerlynck EP, Loik ME, Smith SD (1998) Gas exchange and chlorophyll fluorescence responses of three south-western Yucca species to elevated CO2 and high temperature. Plant Cell Environ 21(12):1275–1283

    Article  Google Scholar 

  • IPCC Intergovernmental Panel on Climate Change (2001) Climate change 2001: synthesis report – summary for policymakers. Cambridge University Press, UK

    Google Scholar 

  • IPCC Intergovernmental Panel on Climate Change (2007) Climate Change 2007. Synthesis Report. In: Pachauri RK, Reisinger A (eds) Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC

    Google Scholar 

  • Kappen L, Lösch R (1984) Diurnal patterns of heat tolerance in relation to CAM. Z Pflanzenphysiol 114:87–96

    CAS  Google Scholar 

  • Kjelvik S (1976) Varmeresistens og varmeveksling for noen planter, vesentlig fra Hardangervidda. Blyttia 34:211–226

    Google Scholar 

  • Körner C (1994) Impact of atmospheric changes on high mountain vegetation. In: Beniston M (ed) Mountain environments in changing climates. Routledge, London, New York, pp 155–166

    Chapter  Google Scholar 

  • Körner C (2003) Alpine plant life. Functional plant ecology of high mountain ecosystems. Springer, Berlin

    Google Scholar 

  • Körner C, Cochrane P (1983) Influence of plant physiognomy on leaf temperature on clear midsummer days in the snowy mountains, south-eastern Australia. Acta Oecol 4(18):117–124

    Google Scholar 

  • Körner C, De Moraes JAPV (1979) Water potential and diffusion resistance in alpine cushion plants on clear summerdays. Acta Oecol 14(2):109–120

    Google Scholar 

  • Körner C, Larcher W (1988) Plant life in cold climates. In: Long S, Woodward FI (eds) Plants and temperature. Comp Biol Ltd, Cambridge, pp 25–57

    Google Scholar 

  • Kudernatsch T, Fischer A, Bernhardt-Römermann M, Abs C (2008) Short-term effects of temperature enhancement on growth and reproduction of alpine grassland species. Basic Appl Ecol 9:263–274

    Article  Google Scholar 

  • Ladinig U, Hacker J, Neuner G, Steinacher G, Cavieres L, Wagner J (2009) Temperature resistance of vegetative and reproductive tissues of high-Andes plants in Central Chile. Plant abiotic stress tolerance, Vienna, 8. 11.2.2009

    Google Scholar 

  • Ladjal M, Epron D, Ducrey M (2000) Effects of drought preconditioning on thermotolerance of photosystem and susceptibility of photosynthesis to heat in cedar seedlings. Tree Physiol 20:1235–1241

    PubMed  CAS  Google Scholar 

  • Larcher W (1984) Ökologie der Pflanzen auf physiologischer Grundlage. Eugen Ulmer, Stuttgart, Berlin

    Google Scholar 

  • Larcher W, Wagner J (1976) Temperaturgrenzen der CO2-Aufnahme und Temperaturresistenz der Blätter von Gebirgspflanzen im vegetativen Zustand. Acta Oecol 11(4):361–374

    Google Scholar 

  • Larcher W, Wagner J (1983) Ökologischer Zeigerwert und physiologische Konstitution von Sempervivum montanum. Verh GfÖ 11:253–364

    Google Scholar 

  • Larcher W, Wagner J (2009) High mountain bioclimate: temperatures near the ground recorded from the timberline to the nival zone in the Central Alps. Contrib Nat Hist 12:857–874

    Google Scholar 

  • Larcher W, Holzner M, Pichler J (1989) Temperaturresistenz inneralpiner Trockenrasen. Flora 183:115–131

    Google Scholar 

  • Larcher W, Wagner J, Thammathaworn A (1990) Effects of superimposed temperature stress on in vivo chlorophyll fluorescence of Vigna unguiculata under saline stress. J Plant Physiol 136:92–102

    CAS  Google Scholar 

  • Larcher W, Wagner J, Lütz C (1997) The effect of heat on photosynthesis, dark respiration and cellular ultrastructure of the arctic-alpine psychrophyte Ranunculus glacialis. Photosynth 34(2):219–232

    Article  CAS  Google Scholar 

  • Larcher W, Kainmüller C, Wagner J (2010) Survival types of high mountain plants under extreme temperatures. Flora 205(1):3–18

    Article  Google Scholar 

  • Loik ME, Harte J (1996) High-temperature tolerance of Artemisia tridentata and Potentilla gracilis under a climate change manipulation. Oecologia 108:224–231

    Google Scholar 

  • Lu CM, Zhang JH (1998) Thermostability of photosystem II is increased in salt-stressed sorghum. Aust J Plant Physiol 25(3):317–324

    Article  CAS  Google Scholar 

  • Ludlow MM (1987) Light stress at high temperature. In: Kyle DJ, Osmond CB, Arntzen CJ (eds) Photoinhibition. Elsevier, Amsterdam, pp 89–109

    Google Scholar 

  • Marcante S, Winkler E, Erschbamer B (2008) Population dynamics in a glacier foreland: do alpine species fit into demographic successional models? Ber Nat med Verein Innsbruck 18:22

    Google Scholar 

  • Menzel A, Fabian P (1999) Growing season extended in Europe. Nature 397:659

    Article  CAS  Google Scholar 

  • Meyer H, Santarius K (1998) Short-term thermal acclimation and heat tolerance of gametophytes of mosses. Oecologia 115:1–8

    Article  Google Scholar 

  • Mooney HA, Billings WD (1961) Comparative physiological ecology of arctic and alpine populations of Oxyria digyna. Ecol Monogr 31:1–29

    Article  Google Scholar 

  • Moser W (1965) Temperatur- und Lichtabhängigkeit der Photosynthese sowie Frost- und Hitzeresistenz der Blätter von drei Hochgebirgspflanzen (Ranunculcus glacialis, Geum reptans, Oxyria digyna). PhD thesis, University of Innsbruck

    Google Scholar 

  • Neuner G, Pramsohler M (2006) Freezing and high temperature thresholds of photosystem 2 compared to ice nucleation, frost and heat damage in evergreen subalpine plants. Physiol Plant 126:196–204

    Article  CAS  Google Scholar 

  • Neuner G, Braun V, Buchner O, Taschler D (1999) Leaf rosette closure in the alpine rock species Saxifraga paniculata Mill.: significance for survival of drought and heat under high irradiation. Plant Cell Environ 22:1539–1548

    Article  Google Scholar 

  • Neuner G, Buchner O, Braun V (2000) Short-term changes in heat tolerance in the alpine cushion plant Silene acaulis ssp. excapa [All.] J. Braun at different altitudes. Plant Biol 2:677–683

    Article  Google Scholar 

  • Pauli H, Gottfried M, Grabherr G (2003) Effects of climate change on the alpine and nival vegetation of the Alps. J Mount Ecol 7:9–12

    Google Scholar 

  • Pisek A, Kemnitzer R (1968) Der Einfluß von Frost auf die Photosynthese der Weißtanne (Abies alba MILL.). Flora 157:314–326

    Google Scholar 

  • Salisbury FB, Spomer GG (1964) Leaf temperatures of alpine plants in the field. Planta 60:497–505

    Article  Google Scholar 

  • Sapper I (1935) Versuche zur Hitzeresistenz der Pflanzen. Planta 23:518–556

    Article  Google Scholar 

  • Schreiber U, Berry JA (1977) Heat-induced changes of chlorophyll fluorescence in intact leaves correlated with damage of the photosynthetic apparatus. Planta 136:233–238

    Article  CAS  Google Scholar 

  • Schwarz W (1970) Der Einfluß der Photoperiode auf das Austreiben, die Frosthärte und die Hitzeresistenz von Zirben und Alpenrosen. Flora 159:258–285

    Google Scholar 

  • Seemann JR, Downton WJS, Berry JA (1986) Temperature and leaf osmotic potential as factors in the acclimation of photosynthesis to high temperature in desert plants. Plant Physiol 80:926–930

    Article  PubMed  CAS  Google Scholar 

  • Semenov MA (2007) Development of high resolution UKCIPO2-based climate change scenarios in the UK. Agri For Meteo 144:127–138

    Article  Google Scholar 

  • Semenov MA, Halford NG (2009) Identifying target traits and molecular mechanisms for wheat breeding under a changing climate. J Exp Bot 60:2791–2804

    Article  PubMed  CAS  Google Scholar 

  • Smillie RM, Nott R (1979) Heat injury in leaves of alpine, temperate and tropical plants. Aust J Plant Physiol 6:135–141

    Article  CAS  Google Scholar 

  • Taub DR, Seemann JR, Coleman JS (2000) Growth in elevated CO2 protects photosynthesis against high-temperature damage. Plant Cell Environ 23(6):649–656

    Article  CAS  Google Scholar 

  • Turner H (1958) Maximaltemperaturen oberflächennaher Bodenschichten an der alpinen Waldgrenze. Wald Leben 10:1–12

    Google Scholar 

  • Valladares F, Pearcy RW (1997) Interactions between water stress, sun-shade acclimation, heat tolerance and photoinhibition in the sclerophyll Hetereomeles arbutifolia. Plant Cell Environ 20:25–36

    Article  Google Scholar 

  • Walther GR, Beißner S, Burga CA (2005) Trends in the upward shift of alpine plants. J Veg Sci 16:541–548

    Article  Google Scholar 

  • Weis E (1982) Influence of metal cations and pH on the heat sensitivity of photosynthetic oxygen evolution and chlorophyll fluorescence in spinach chloroplasts. Planta 154:41–47

    Article  CAS  Google Scholar 

  • Weis E, Berry JA (1988) Plants and high temperature stress. In: Long SP, Woodward FI (eds) Plants and temperature. Comp Biol Ltd, Cambridge, pp 329–346

    Google Scholar 

  • Wildner-Eccher MT (1988) Keimungsverhalten von Gebirgspflanzen und Temperaturresistenz der Samen und Keimpflanzen. PhD thesis, University of Innsbruck

    Google Scholar 

  • Zavadskaya IG, Denko EI (1968) The effect of insufficient water supply on the stability of leaf cells of certain plants of the Pamirs. Bot Zeit 53:795–805

    Google Scholar 

Download references

Acknowledgements

We wish to thank Prof. Larcher for helpful suggestions on the manuscript and for access to the data of the PhD thesis of Maria Wildner-Eccher.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilbert Neuner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Neuner, G., Buchner, O. (2012). Dynamics of Tissue Heat Tolerance and Thermotolerance of PS II in Alpine Plants. In: Lütz, C. (eds) Plants in Alpine Regions. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0136-0_6

Download citation

Publish with us

Policies and ethics