Skip to main content

On the Role of Variable Infectivity in the Dynamics of the Human Immunodeficiency Virus Epidemic

  • Chapter
Mathematical and Statistical Approaches to AIDS Epidemiology

Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 83))

Abstract

In this paper, we study the effects of variable infectivity in combination with a variable incubation period on the dynamics of HIV (the human immunodeficiency virus, the etiological agent for AIDS, the acquired immunodeficiency syndrome) in a homogeneously mixing population. In the model discussed here, the functional relationship between mean sexual activity and size of the population is assumed to be nonlinear and to saturate at high population sizes. We identify a basic reproductive number R0 and show that the disease dies out if R0 < 1. If R0 > 1 the incidence rate converges to or oscillates around a uniquely determined nonzero equilibrium, the stability of which is studied. Our findings provide the analytical basis for exploring the parameter range in which the equilibrium is locally asymptotically stable. Oscillations cannot be excluded in general, and may occur in particular, if the variable infectivity is concentrated at an earlier part of the incubation period. Whether they can also occur for the reported two peaks of infectivity observed in HIV-infected individuals has to be the subject of future numerical investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, R.M., H.C. Jackson, R.M. May, and A.D.M. Smith. (1981). Population dynamics of fox rabies in Europe. Nature 289, 765–771.

    Article  Google Scholar 

  • Anderson, R.M. and R.M. May. (1987). Transmission dynamics of HIV infection. Nature 326, 137–142.

    Article  Google Scholar 

  • Anderson, R.M., R.M. May, and G.F. Medley. (1986). A preliminary study of the transmission dynamics of the human immunodeficiency virus (HIV), the causative agent of AIDS. IMA J. Math. Med. Biol. 3, 229–263.

    Article  MathSciNet  MATH  Google Scholar 

  • Andreasen, V. (1988). Dynamical models of epidemics in age-structured populations: Analysis and simplifications. Ph.D. Thesis, Cornell University.

    Google Scholar 

  • Andreasen, V. (1989). Multiple time scales in the dynamics of infectious diseases. In Mathematical Approaches to Problems in Resource Management and Epidemiology, C. Castillo-Chavez, S. A. Levin, and C. Shoemaker (eds.). Lecture Notes in Biomathematics 81. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo.

    Google Scholar 

  • Blythe, S.P. and R.M. Anderson. (1988a). Distributed incubation and infectious periods in models of the transmission dynamics of the human immunodeficiency virus (HIV). IMA J. Math. Med. Bio. 5, 1–19.

    Article  MathSciNet  MATH  Google Scholar 

  • Blythe, S.P. and R.M. Anderson. (1988b). Variable infectiousness in HIV transmission models. IMA J. of Mathematics Applied in Med. and Biol. 5, 181–200.

    Article  MathSciNet  MATH  Google Scholar 

  • Busenberg, S., K.L. Cooke, and H.R. Thieme. (1989). Interaction of population growth and disease dynamics for HIV/AIDS in a heterogeneous population. (Preprint.)

    Google Scholar 

  • Castillo-Chavez, C., K. L. Cooke, W. Huang, and S. A. Levin. (1989a). On the role of long periods of infectiousness in the dynamics of acquired immunodeficiency syndrome (AIDS). In Mathematical Approaches to Problems in Resource Management and Epidemiology, C. Castillo-Chavez, S. A. Levin, and C. Shoemaker (eds.). Lecture Notes in Biomathematics 81, Springer-Verlag,.

    Google Scholar 

  • Castillo-Chavez, C., K.L. Cooke, W. Huang, and S.A. Levin. (1989b). One the role of long incubation periods in the dynamics of acquired immunodeficiency syndrome (AIDS), Part 1. Single population models. J. Math. Biol. 27, 373–398.

    Article  MathSciNet  MATH  Google Scholar 

  • Castillo-Chavez, K. L. Cooke, W. Huang, and S. A. Levin. (1989c). Results on the dynamics for models for the sexual transmission of the human immunodeficiency virus. Applied Mathematics Letters. (In press.)

    Google Scholar 

  • Castillo-Chavez, C., K.L. Cooke, W. Huang, and S.A. Levin. (1989d). On the role of long incubation periods in the dynamics of acquired immunodeficiency syndrome (AIDS), Part 2. Multiple group models. In Mathematical and Statistical Approaches to AIDS Epidemiology, C. Castillo-Chavez (ed.). Lecture Notes in Biomathemtics, Springer-Verlag. (This volume.)

    Chapter  Google Scholar 

  • Castillo-Chavez, C., H.W. Hethcote, V. Andreasen, S.A. Levin, and W.M. Liu. (1989). Epidemiological models with age structure, proportionate mixing, and cross-immunity. J. Math. Biol. 27, 233–258.

    Article  MathSciNet  MATH  Google Scholar 

  • Castillo-Chavez, C., H.W. Hethcote, V. Andreasen, S.A. Levin, and W.M. Liu. (1988). Cross-immunity in the dynamics of homogeneous and heterogeneous populations. In Mathematical Ecology, L. Gross, T. G. Hallam, and S. A. Levin (eds.). Proceedings of the Autumn Course Research Seminars, Trieste 1986 and World Scientific Publ. Co., Singapore.

    Google Scholar 

  • Diekmann, O. and S.A. van Gils. (1984). Invariant manifolds for Volterra integral equations of convolution type. J. Diff. Equa. 54, 189–190.

    Article  Google Scholar 

  • Diekmann, O. and R. Montijn. (1982). Prelude to Hopf bifurcation in an epidemic model: analysis of a characteristic equation associated with a nonlinear Volterra integral equation. J. Math. Biol. 14, 117–127.

    Article  MathSciNet  MATH  Google Scholar 

  • Francis, D.F., P.M. Feorino, J.R. Broderson, H.M. McClure, J.P. Getchell, C.R. McGrath, B. Swenson, J.S. McDougal, E.L. Palmer, A.K. Harrison, F. Barré-Sinoussi, J.C. Chermann, L. Montagnier, J.W. Curran, C.D. Cabradilla, and V.S. Kalyanaraman. (1984). Infection of chimpanzees with lymphadenopathy-associated virus. Lancet 2, 1276–1277.

    Article  Google Scholar 

  • Gripenberg, G. (1980). Periodic solutions to an epidemic model. J. Math. Biol. 10, 271–280.

    Article  MathSciNet  MATH  Google Scholar 

  • Gripenberg, G. (1981). On some epidemic model. Appl. Math. 39, 317–327.

    MathSciNet  MATH  Google Scholar 

  • Hale, J.K. and P. Waltman. (1989). Persistence in infinite-dimensional systems. SIAM J. Math. Anal. 20, 388–395.

    Article  MathSciNet  MATH  Google Scholar 

  • Hethcote, H.W. and S.A. Levin. (1989). Periodicity in epidemiological models. In Applied Mathematical Ecology, S. A. Levin, T. G. Hallam, and L. J. Gross (eds.). Biomathematics 18, Springer-Verlag, Heidelberg.

    Google Scholar 

  • Hethcote, H.W., H.W. Stech, and P. van den Driessche. (1981). Periodicity and stability in epidemic models: a survey. In Differential Equations and Applications in Ecology, Epidemics and Population problems, S. Busenberg and K. L. Cooke (eds.). Academic Press, New York.

    Google Scholar 

  • Hethcote, H.W. and H.R. Thieme. (1985). Stability of the endemic equilibrium in epidemic models with subpopulations. Math. Biosci. 75, 205–227.

    Article  MathSciNet  MATH  Google Scholar 

  • Hethcote, H.W. and J.A. Yorke. (1984). Gonorrhea, transmission dynamics, and control. Lecture Notes in Biomathematics 56. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo.

    Google Scholar 

  • Holling, C.S. (1966). The functional response of invertebrate predators to prey density. Mem. Ent. Soc. Canada 48.

    Google Scholar 

  • Hyman, J.M. and E.A. Stanley. (1988). A risk base model for the spread of the AIDS virus. Math. Biosci. 90, 415–473.

    Article  MathSciNet  MATH  Google Scholar 

  • Hyman, J.M. and E.A. Stanley. (1989). The effects of social mixing patterns on the spread of AIDS. In Mathematical Approaches to Problems in Resource Management and Epidemiology, C. Castillo-Chavez, S. A. Levin, and C. Shoemaker (eds.). Lecture Notes in Biomathematics 81, Springer-Verlag, Berlin, Heidelberg, New York and Tokyo.

    Google Scholar 

  • Lange, J.M.A., D.A. Paul, H.G. Huisman, F. De Wolf, H. Van den Berg, C.A. Roel, S.A. Danner, J. Van der Noordaa, and J. Goudsmit. (1986). Persistent HIV antigenaemia and decline of HIV core antibodies associated with transition to AIDS. Brit. Med. J. 293, 1459–1462.

    Article  Google Scholar 

  • Liu, W-m., H.W. Hethcote, and S.A. Levin. (1987). Dynamical behavior of epidemiological models with nonlinear incidence rates. J. Math. Biol. 25(4), 359–380.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, W-m., S.A. Levin, and Y. Iwasa. (1986). Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models. J. Math. Biol. 23, 187–204.

    Article  MathSciNet  MATH  Google Scholar 

  • Londen, S.O. (1981). Integral equations of Volterra type. Mathematics of Biology. Liguori Editore, Napoli, Italia.

    Google Scholar 

  • May, R.M. and R.M. Anderson. (1989). The transmission dynamics of human immunodeficiency virus (HIV). Phil. Trans. R. Soc. London B 321, 565–607.

    Article  Google Scholar 

  • May, R.M., R.M. Anderson, and A.R. McLean. (1988). Possible demographic consequences of HIV/AIDS epidemics: I. Assuming HIV infection always leads to AIDS. Math. Biosci. 90, 475–506.

    Article  MathSciNet  MATH  Google Scholar 

  • May, R.M., R.M. Anderson, and A.R. McLean. (1989). Possible demographic consequences of HIV/AIDS epidemics: II. Assuming HIV infection does not necessarily lead to AIDS. In Mathematical Approaches to Problems in Resource Management and Epidemiology. C. Castillo-Chavez, S. A. Levin, and C. Shoemaker (eds). Lecture Notes in Biomathematics 81, Springer-Verlag, Berlin, Heidelberg, New York and Tokyo.

    Google Scholar 

  • Miller, R.K. (1971). Nonlinear Volterra Integral Equations. Benjamin, Menlo Park.

    MATH  Google Scholar 

  • Salahuddin, S.Z., J.E. Groopman, P.D. Markham, M.G. Sarngaharan, R.R. Redfield, M.F. McLane, M. Essex, A. Sliski, and R.C. Gallo. (1984). HTLV-III in symptom-free seronegative persons. Lancet 2, 1418–1420.

    Article  Google Scholar 

  • Thieme, H. R. (1989a). Semiflows generated by Lipschitz perturbations of non-densely defined operators. I. The theory. (Preprint.)

    Google Scholar 

  • Thieme, H. R. (1989b). Semiflows generated by Lipschitz perturbations of non-densely defined operators. II. Examples. (Preprint.)

    Google Scholar 

  • Thieme, H.R. and C. Castillo-Chavez. (1989). On the possible effects of infection-age-dependent infectivity in the dynamics of HIV/AIDS. (Manuscript.)

    Google Scholar 

  • Webb, G.F. (1985). Theory of Nonlinear Age-Dependent Population Dynamics. Marcel Dekker, New York.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thieme, H.R., Castillo-Chavez, C. (1989). On the Role of Variable Infectivity in the Dynamics of the Human Immunodeficiency Virus Epidemic. In: Castillo-Chavez, C. (eds) Mathematical and Statistical Approaches to AIDS Epidemiology. Lecture Notes in Biomathematics, vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-93454-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-93454-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52174-7

  • Online ISBN: 978-3-642-93454-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics