Skip to main content

Does Indirect Calorimetry Reflect Energy Expenditure in the Critically Ill Patient?

  • Chapter

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 17))

Abstract

Energy processes intimately linked to life in all its manifestations. They are essential to perform such diverse functions as to adapt to changes in the environment, to grow, to move and to reproduce. This is also true in healthy humans and during acute illness, where reduced energy production may be related to the fatal autcome.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kleiber M (1975) The fire of life: An introduction to animal energetics. RE Kreiger Inc:pp 116

    Google Scholar 

  2. Bland R, Shoemaker W (1985) Common physiologic pattern in general surgical patients: Hemodynamic and oxygen transport changes during and after operation in patients with and without associated medical problems. Surg Clin North Am 65:793–809

    PubMed  CAS  Google Scholar 

  3. Wilson R, Christensen C, LeBlanc L (1972) Oxygen consumption in critically ill surgical patients. Ann Surg 176:801–804

    Article  PubMed  CAS  Google Scholar 

  4. Shoemaker W, Kram H, Appel P, Flemming A (1990) The efficacy of central venous and pulmonary artery catheters and therapy based upon them in reducing mortality and morbidity. Arch Surg 125:1332–1338

    Article  PubMed  CAS  Google Scholar 

  5. Edwards J (1989) Optimal levels of oxygen transport in critically ill patients. In: Vincent JL (ed) Update in intensive care and emergency medicine, Vol 8. Springer Verlag, Berlin, Heidelberg, New York, pp 205–214

    Google Scholar 

  6. Shoemaker W, Appel P, Kram H, Waxman K, Lee T (1988) Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest 94:1176–1186

    Article  PubMed  CAS  Google Scholar 

  7. Bursztein S, Elwyn DH, Askanazi J, Kinney JM (1989) Energy metabolism, indirect calorimetry, and nurtrition. Williams & Wilkins, Baltimore

    Google Scholar 

  8. Pahud P, Ravussin E, Jéquier E (1980) Energy expended during deficit period of submaximal exercise in man. J Appl Physiol 48:770–775

    PubMed  CAS  Google Scholar 

  9. Jéquier E, Flatt J (1986) Recent advances in human energetics. News Physiol Sciences 1:112–114

    Google Scholar 

  10. Ferrannini E (1988) The theoretical bases of indirect calorimetry. A review. Metabolism 37:287–301

    Article  PubMed  CAS  Google Scholar 

  11. Jéquier E, Schutz Y (1983) Long-term measurements of energy expenditure in human using a respiration chamber. Am J Clin Nutr 38:989–998

    PubMed  Google Scholar 

  12. Jéquier E, Felber J (1987) Indirect calorimetry. Baillière’s Clin Endocr Metab 1:911–935

    Article  Google Scholar 

  13. Jéquier E, Acheson K, Schutz Y (1987) Assessment of energy expenditure and fuel utilization in man. Ann Rev Nutr 7:187–208

    Article  Google Scholar 

  14. Jéquier E (1984) Energy expenditure in obesity. Clin Endocr Metab 13:563–580

    Article  Google Scholar 

  15. Spurr G, Prentice A, Murgatroyd P, Goldberg G, Reina J, Christman N (1988) Energy expenditure from minute heart rate recording: Comparison with indirect calorimetry. Am J Clin Nutr 48:552–559

    PubMed  CAS  Google Scholar 

  16. Durnin J, Edward R (1955) Pulmonary ventilation as an index of energy expenditure. Quart J Expt Physiol 40:370–377

    CAS  Google Scholar 

  17. Ford A, Hellerstein A (1959) Estimation of energy expenditure from pulmonary ventilation. J Appl Physiol 14:981–984

    Google Scholar 

  18. Harding R, Sen R (1970) Evaluation of total muscular activity by quantification of electro-myograms, through a summing amplifier. Med Biol Erg 8:343–356

    Article  CAS  Google Scholar 

  19. Stunkard A (1960) A method of studying physical activity in man. Am J Clin Nutr 8:595–601

    Google Scholar 

  20. Coward W, Prentice A (1985) Isotope method for the measurement of carbon dioxide production in man. Am J Clin Nutr 41:659–661

    PubMed  CAS  Google Scholar 

  21. Schoeller D, van Stanten E (1982) Measurement of energy expenditure in man by doubly-labelled water method. J Appl Physiol 53:955–959

    PubMed  CAS  Google Scholar 

  22. Spinnler G, Jéquier E, Favre R, Dolivo M, Vanotti A (1973) Human calorimeter with a new type of gradient layer. J Appl Physiol 35:159–165

    Google Scholar 

  23. Frascarolo P, Schutz Y, Jéquier E (1990) Decreased thermal conductance during the lutheal phase of the menstrual cycle in women. J Appl Physiol 69:2029–2033

    PubMed  CAS  Google Scholar 

  24. Livesey G, Elia M (1988) Estimation of energy expenditure, net carbohydrate utilization, and net fat oxidation and synthesis by indirect calorimetry: Evaluation of errors with special reference to the detailed composition of foods. Am J Clin Nutr 47:608–628

    PubMed  CAS  Google Scholar 

  25. Bursztein S, Saphar P, Singer P, Elwyn D (1989) A mathematical analysis of indirect calorimetry measurements in acutely ill patients. Am J Clin Nutr 50:227–230

    PubMed  CAS  Google Scholar 

  26. Behrends W, Weiland C, Giani J (1987) Continuous measurement of oxygen uptake: Evaluation of the Enström metabolic computer and clinical experiences. Acta Anaes- thesiol Scand 31:10–14

    Article  Google Scholar 

  27. Bizouarn P, Soulard D, Blanloeil Y, Guillet A, Goarin Y (1992) Oxygen consumption after cardiac surgery: A comparison between calculation by Fick’s principle and measurement by indirect calorimetry. Intensive Care Med 18:206–209

    Article  PubMed  CAS  Google Scholar 

  28. Brandi L, Grana M, Mazzanti T, Giunta F, Natali A, Ferrannini E (1992) Energy expenditure and gas exchange measurements in postoperative patients: Thermodilution versus indirect calorimetry. Crit Care Med 20:1273–1283

    Article  PubMed  CAS  Google Scholar 

  29. Chioléro R, Mavrocordatos P, Bracco D, Schutz Y, Cayeux C, Revelly J (1993) Cold iced injectate should not be used to assess O2 consumption in acutelly ill patients (submitted)

    Google Scholar 

  30. Myburgh J, Webb R, Worthley L (1992) Ventilation/perfusion indices do not correlate with the difference between oxygen consumption measured by the Fick principle and metabolic monitoring systems in critically ill patients. Crit Care Med 20:479–482

    Article  PubMed  CAS  Google Scholar 

  31. Vermeij C, Feenstra B, Bruining H (1990) Oxygen delivery and oxygen uptake in postoperative and septic patients. Chest 98:415–120

    Article  PubMed  CAS  Google Scholar 

  32. Ronco J, Phang T, Walley K, Wiggs B, Fenwick J, Russel J (1991) Oxygen consumption is independent of changes in oxygen delivery in severe adult respiratory distress syndrome. Am Rev Respir Dis 143:1267–1273

    PubMed  CAS  Google Scholar 

  33. Damask M, Schwarz Y, Weissman C (1987) Energy measurements and requirements of critically ill patients. Crit Care Clin 3:71–96

    PubMed  CAS  Google Scholar 

  34. Ultman J, Bursztein S (1981) Analysis of error in the determination of respiratory gas exchange at varying FiO2. J Appl Physiol 50:210–216

    PubMed  CAS  Google Scholar 

  35. Eccles R, Swinamer D, Jones R, King G (1986) Validation of a compact system for measuring gas exchange. Crit Care Med 64:807–811

    Article  Google Scholar 

  36. Westenskow D, Cutler C, Wallace W (1984) Instrumentation for monitoring gas exchange and metabolic rate in critically ill patients. Crit Care Med 12:183–187

    Article  PubMed  CAS  Google Scholar 

  37. Makita K, Nunn J, Royston B (1990) Evaluation of metabolic measuring instruments for use in critically ill patients. Crit Care Med 18:638–644

    Article  PubMed  CAS  Google Scholar 

  38. Phang P, Rich T, Ronco J (1990) A validation and comparison study of two metabolic monitors. JPEN 14:259–261

    Article  CAS  Google Scholar 

  39. Weissman C, Sardar A, Kemper M (1990) Techniques, materials, and devices. JPEN 14:216–221

    Article  CAS  Google Scholar 

  40. Takala J, Keinänen O, Väisänen P, Karl A (1989) Measurement of gas exchange in intensive care: Laboratory and clinical validation of a new device. Crit Care Med 17:1041–1047

    Article  PubMed  CAS  Google Scholar 

  41. Weinsier RL, Schutz Y, Bracco D (1992) Reexamination of the relationship of resting metabolic rate to fat-free mass and to the metabolically active components of fat-free mass in human. Am J Clin Nutr 55:790–794

    PubMed  CAS  Google Scholar 

  42. Grande F, Keys A (1980) Body weight, body composition, and calorie status. In: Goodhart R, Shils M (eds) Modern nutrition in health and disease, 6 edn. Lea and Febiger, Philadelphia, PA, pp 3–34

    Google Scholar 

  43. Boyd O, Grounds M, Bennett D (1992) The dependency of oxygen consumption on oxygen delivery in critically ill postoperative patients is mimicked by variations in sedation. Chest 101:1619–1624

    Article  PubMed  CAS  Google Scholar 

  44. Dempsey D, Guenter P, Mullen J, et al (1985) Energy expenditure in acute trauma to the head with and without barbiturate therapy. Surg Gynecol Obstet 16:128–134

    Google Scholar 

  45. Clifton G, Robertson C, Choi S (1986) Assessment of nutritional requirements of head- injured patients. J Neurosurg 64: 895–901

    Article  PubMed  CAS  Google Scholar 

  46. Vaisman N, Rossi MF, Goldberg E, Dibden L, Wykes LJ, Pencharz PB (1988) Energy expenditure and body composition in patients with anorexia nervosa. J Pediatr 113:919–924

    Article  PubMed  CAS  Google Scholar 

  47. Casper R, Schoeller D, Kuschner R, Hnilicka J, Gold S (1991) Total daily energy expenditure and activity level in anorexia nervosa. Am J Clin Nutr 53:1143–1150

    PubMed  CAS  Google Scholar 

  48. Melchior J, Rigaud D, Rozen R, Malon D, Apfelbaum M (1989) Energy expenditure economy induced by decrease in lean body mass in anorexia nervosa. Eur J Clin Nutr 43:793–799

    PubMed  CAS  Google Scholar 

  49. Chioléro R, Lemarchand T (1992) Modifications hormonales après traumatisme crânien sévère. In: Boles JJ (ed) Conséquences endocriniennes des états d’agression aiguë. Arnette, Paris pp 79–90

    Google Scholar 

  50. Chioléro R, Schutz Y, Lemarchand T, et al (1989) Hormonal and metabolic changes following severe head injury or noncranial injury. JPEN 13:5–12

    Article  Google Scholar 

  51. Simonson DC, DeFronzo RA (1990) Indirect calorimetry: Methodological and interpretative problems. Am J Physiol 258:E399–E412

    PubMed  CAS  Google Scholar 

  52. Rosenblatt J, Wolfe R (1988) Calculation of substrate flux using stable isotopes. Am J Physiol 254:E526–E531

    PubMed  CAS  Google Scholar 

  53. Irwing C, Wong W, Shulman R, O’Brian Smith E, Klein P (1983) 13C bicarbonate kinetics in human: Intra-vs interindividual variations. Am J Physiol 245 : R190–R202

    Google Scholar 

  54. Weissmann C, Hyman A (1987) Nutritional care of the critically ill patient with respiratory failure. Crit Care Clin 3:185–202

    Google Scholar 

  55. Wilson D, Rogers R, Hoffman R (1985) Nutrition and chronic lung disease. Am Rev Respir Dis 132:1347–1365

    PubMed  CAS  Google Scholar 

  56. Lewis W, Chwals W, Benotti P, et al (1988) Bedside assessment of the work of breathing. Crit Care Med 16:117–122

    Article  PubMed  CAS  Google Scholar 

  57. Shikora S, Bistrian B, Borlase B, Blackburne G, Stone M, Benotti P (1990) Work of breathing: Reliable predictor of weaning and extubation. Crit Care Med 18:157–162

    Article  PubMed  CAS  Google Scholar 

  58. Talpers S, Romberger D, Bunce S, Pingleton S (1992) Nutritionally associated increased carbon dioxide production. Excess total calories vs high proportion of carbohydrate calories. Chest 102:551–555

    Article  PubMed  CAS  Google Scholar 

  59. Chioléro RL, Revelly JP, Jéquier E (1991) Effects of catecholamines on oxygen consumption and oxygen delivery in critically ill patients. Chest 100:1676–1684

    Article  PubMed  Google Scholar 

  60. Chioléro R, Breitenstein E, Thorin D, et al (1989) Effects of propranolol on resting metabolic rate after severe head injury. Crit Care Med 17:328–344

    Article  PubMed  Google Scholar 

  61. Breitenstein E, Chioléro R, Jéquier E, Dayer P, Krupp S, Schutz Y (1990) Effects of beta-blockade on energy metabolism following bums. Burns 16:259–269

    Article  PubMed  CAS  Google Scholar 

  62. Wolfe R, Herndon DN, Jahoor F, Miyosi H, Wolfe M (1987) Effect of severe burn injury on substrate cycling by glucose and fatty acids. N Engl J Med 317:403–408

    Article  PubMed  CAS  Google Scholar 

  63. Swinamer D, Phang P, Jones R, Grace M, King E (1988) Effect of routine administration of analgesia on energy expenditure in critically ill patients. Chest 92:4–10

    Article  Google Scholar 

  64. Macintyre P, Pavlin E, Dwersteg J (1987) Effect of meperidine on oxygen consumption, carbon dioxide production and respiratory gas exchange in postanaesthesia shivering. Anesth Analg 66:751–755

    Article  PubMed  CAS  Google Scholar 

  65. Rodriguez J, Weissman C, Damask M, Askanazi J, Hyman A, Kinney J (1983) Morphine and postoperative rewarming in critically ill patients. Circulation 68:1238–1246

    Article  PubMed  CAS  Google Scholar 

  66. Allard JP, Pichard C, Hoshino E, et al (1990) Validation of a new formula for calculating the energy requirements of burn patients. JPEN 14:115–118

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chioléro, R.L., Bracco, D., Revelly, J.P. (1993). Does Indirect Calorimetry Reflect Energy Expenditure in the Critically Ill Patient?. In: Wilmore, D.W., Carpentier, Y.A. (eds) Metabolic Support of the Critically Ill Patient. Update in Intensive Care and Emergency Medicine, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85011-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85011-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-85013-4

  • Online ISBN: 978-3-642-85011-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics