Skip to main content

Size, Scaling, and the Evolution of Complex Life Cycles

  • Conference paper

Abstract

J.T. Bonner (1965) noted that the ultimate description of an organism is that of the life cycle. An organism is not the static representation of the adult we associate with taxonomic characterizations and most ecological theory, but the dynamic unfolding of the genome over ontogeny, and the consequent succession of life history stages or forms. The life cycle, of course, is also the fundamental unit of demographic analyses, and therefore a focus for considerations of ecological processes and their manifestation in evolutionary change. As Istock (1984) put it, every inference we make about the evolutionary process has some equivalent rendering within this demographic framework. Because the life cycle assumes a central position in the structure of biology, it is useful to order patterns in life cycle organization, and to ask what processes have shaped these patterns.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bell G (1982) The masterpiece of nature: the evolution and genetics of sexuality. Univ Cal Press, Berkeley.

    Google Scholar 

  • Blueweiss L, Fox H, Kudzma U, Nakashima D, Peters R, Sams S (1978) Relationship between body size and some life history parameters. Oecologia (Berlin) 37:257–272.

    Article  Google Scholar 

  • Bonar DB (1978) Morphogenesis at metamorphosis in opisthobranch molluscs. In: Chia F, Rice M (eds) Settlement and metamorphosis of marine invertebrate larvae. Elsevier, New York.

    Google Scholar 

  • Bonner JT (1965) Size and cycle. Univ Press, Princeton.

    Google Scholar 

  • Bonner JT (1982) Evolution and development. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Borror DJ, DeLong DM (1971) An introduction to the study of insects. Holt, Rinehart & Winston, New York.

    Google Scholar 

  • Brody S (1945) Bioenergetics and growth. Hafner, New York.

    Google Scholar 

  • Calder WA (1984) Size, function, and life history. Harvard Univ Press, Cambridge.

    Google Scholar 

  • Caswell H (1982) Stable structure and reproductive value for populations with complex life cycles. Ecology 63:1223–1231.

    Article  Google Scholar 

  • Cerri RD, Fraser DF (1983) Predation risk in foraging minnows: balancing conflicting demands. Am Nat 121:552–561.

    Article  Google Scholar 

  • Chestnut DE (1983) Feeding habits of juvenile spot Leiostomus xanthurus (Lacepede) in North Inlet Estuary, Georgetown, S. C. Ms Thesis, Univ S Car.

    Google Scholar 

  • Chia F-S, Rice ME (1978) Settlement and metamorphosis of marine invertebrate larvae. Elsevier, New York.

    Google Scholar 

  • Clark CW, Levy DA (1988) Diel vertical migrations by juvenile sockeye salmon and the antipredator window. Am Nat 131:271–290.

    Article  Google Scholar 

  • Cohen J (1985) Metamorphosis: Introduction, usages, and evolution. In: Bulls M, Brownes M (eds) Metamorphosis. Clarendon, Oxford.

    Google Scholar 

  • Duellman WE, Trueb L (1986) Biology of amphibians. McGraw-Hill, New York.

    Google Scholar 

  • Ehlinger TJ (1986) Learning, sampling and the role of individual variability in the foraging behavior of bluegill sunfish. Ph D Thesis, Michigan State Univ.

    Google Scholar 

  • Freeman GL (1982) What does the comparative study of development tell us about evolution? In: Bonner JT (ed) Evolution and development. Springer, Berlin Heidelberg New York, pp 155–167.

    Google Scholar 

  • Gilliam JF (1982) Habitat use and competitive bottlenecks in size-structured fish populations. Ph D Thesis, Michigan State Univ.

    Google Scholar 

  • Gilliam JF, Fraser DF (1987) Habitat selection under predation hazard: Test of a model with foraging minnows. Ecology 68:1856–1862.

    Article  Google Scholar 

  • Gould SJ (1966) Allometry and size in ontogeny and phylogeny. Biol Rev 41:587–640.

    Article  PubMed  CAS  Google Scholar 

  • Gould SJ (1977) Ontogeny and phylogeny. Harvard Univ Press, Cambridge.

    Google Scholar 

  • Hamilton WD, May RM (1977) Dispersal in stable habitats. Nature (London) 269:578–581.

    Article  Google Scholar 

  • Hassell MP (1978) The dynamics of arthropod predator-prey systems. Univ Press, Princeton.

    Google Scholar 

  • Heusner AA (1982a) Energy metabolism and body size. I. Is the 0.75 mass exponent of Kleiber’s equation a statistical artifact? Respirat Physiol 48:1–12.

    Article  CAS  Google Scholar 

  • Heusner AA (1982b) Energy metabolism and body size. II. Dimensional analysis and energetic nonsimilarity. Respirat Physiol 48:13–25.

    Article  CAS  Google Scholar 

  • Highnam KC (1981) A survey of invertebrate metamorphosis. In: Gilbert LI, Frieden E (eds) Metamorphosis. Plenum, New York, pp 43–73.

    Chapter  Google Scholar 

  • Horn HS, Bonner JT, Dohle W, Katz MJ, Koehl MAR, Meinhardt H, Ragg RA, Reif W-E, Stearns SC, Strathmann R (1982) Adaptive aspects of development group report. In: Bonner JT (ed) Evolution and development. Springer, Berlin Heidelberg New York, pp 215–235.

    Google Scholar 

  • Hughes GM (1977) Dimensions and the respiration of lower vertebrates. In: Dedley TJ (ed) Scale effects in animal locomotion. Academic Press, New York London, pp 57–81.

    Google Scholar 

  • Huxley JS (1932) Problems of relative growth. Methuen, London.

    Google Scholar 

  • Istock CA (1967) The evolution of complex life cyle phenomena: An ecological perspective. Evolution 21:592–605.

    Article  Google Scholar 

  • Istock CA (1984) Boundaries to life history variation and evolution. In: Price PW, Slobodchikoff CN, Gaud WS (eds) A new ecology: novel approaches to interactive systems. John Wiley & Sons, New York, pp 143–168.

    Google Scholar 

  • Jagersten G (1972) Evolution of the metazoan life cycle. Academic Press, New York London.

    Google Scholar 

  • Lubchenco J, Curbit K (1980) Heteromorphic life histories of certain marine algae as adaptations to variations in herbivory. Ecology 61:676–687.

    Article  Google Scholar 

  • Martin NV (1966) The significance of food habits in the biology, exploitation, and management of Alqonquin Park, Ontario, lake trout. Trans Am Fish Soc 95:415–422.

    Article  Google Scholar 

  • Matsuda R (1987) Animal evolution in changing environments with special reference to abnormal metamorphosis. John Wiley & Sons, New York.

    Google Scholar 

  • Mittelbach GG (1980) Foraging efficiency and size-class competition in the bluegill sunfish (Lepomis macrochirus). Ph D Thesis, Michigan State Univ.

    Google Scholar 

  • Mittelbach GG (1981) Foraging efficiency and body size: A study of optimal diet and habitat use by bluegills. Ecology 62:1370–1386.

    Article  Google Scholar 

  • Osenberg CW, Werner EE, Mittelbach GG, Hall DJ (1987) Growth patterns in bluegill (Lepomis macrochirus) and pumpkinseed (L. gibbosus) sunfish: environmental variation and the importance of ontogenetic niche shifts. Can J Fish Aquat Sci 45:17–26.

    Article  Google Scholar 

  • Paloheimo JE, Dickie LM (1966) Food and growth of fishes. II. Effects of food and temperature on the relation between metabolism and body weight. J Fish Res Board Can 23:869–908.

    Article  Google Scholar 

  • Pandian TJ, Marian MP (1985) Time and energy cost of metamorphosis in the Indian bullfrog Rana tigrina. Copeia 1985:653–662.

    Article  Google Scholar 

  • Pearse V, Pearse J, Buchsbaum M, Buchsbaum R (1987) Living invertebrates. Blackwell, Palo Alto Oxford.

    Google Scholar 

  • Peters RH (1983) The ecological implications of body size. Univ Press, Cambridge.

    Google Scholar 

  • Policansky D (1983) Size, age and demography of metamorphosis and sexual maturation in fishes. Am Zool 23:57–64.

    Google Scholar 

  • Power ME, Mathews WJ, Stewart AJ (1985) Grazing minnows, piscivorous bass, and stream algae: dynamics of a strong interaction. Ecology 66:1448–1456.

    Article  Google Scholar 

  • Putter A (1920) Studien über physiologische Ähnlichkeit VI. Wachstumsähnlichkeiten, Pflüger’s Arch Ges Physiol Mensch Tiere 180:298–340.

    Article  Google Scholar 

  • Raff RA, Kaufman TC (1983) Embryos, genes, and evolution. Macmillan, New York.

    Google Scholar 

  • Schmidt-Nielsen K (1975) Scaling in biology: The consequences of size. J Exp Zool 194:287–308.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Nielsen K (1977) Problems of scaling: Locomation and physiological corrolates. In: Pedley TJ (ed) Scale effects in animal locomotion. Academic Press, New York London, pp 1–21.

    Google Scholar 

  • Schmidt-Nielsen K (1984) Scaling: Why is animal size so important? Univ Press, Cambridge.

    Google Scholar 

  • Schoener TW (1969) Models of optimal size for solitary predators. Am Nat 103:277–313.

    Article  Google Scholar 

  • Sebens KP (1982) The limits to indeterminate growth: An optimal size model applied to passive suspension feeders. Ecology 63:209–222.

    Article  Google Scholar 

  • Sebens KP (1987) The ecology of indeterminate growth in animals. Annu Rev Ecol Syst 18:371–407.

    Article  Google Scholar 

  • Stearns SC (1976) Life history tactics: A review of the ideas. Q Rev Biol 51:3–47.

    Article  PubMed  CAS  Google Scholar 

  • Stearns SC (1977) The evolution of life history traits. Annu Rev Ecol Syst 8:145–172.

    Article  Google Scholar 

  • Steemann Nielsen E (1975) Marine photosynthesis with special emphasis on the ecological aspects. Elsevier, Amsterdam.

    Google Scholar 

  • Strathmann RR (1985) Feeding and nonfeeding larval development and life-history evolution in marine invertebrates. Annu Rev Ecol Syst 16:339–361.

    Article  Google Scholar 

  • Strickler JR (1975) Swimming of planktonic Cyclops species (Copepoda, Crustacea): pattern, movements and their control. In: Wu TY-T, Brokaw CJ, Brennen C (eds) Swimming and flying in nature. Plenum, New York, pp 599–613.

    Google Scholar 

  • Thompson D’AW (1961) On growth and form. Univ Press, Cambridge.

    Google Scholar 

  • Thorson G (1950) Reproductive and larval biology of marine bottom invertebrates. Biol Rev 25:1–45.

    Article  Google Scholar 

  • Toft CA (1986) Communities of species with parasitic life-styles. In: Diamond J, Case TJ (eds) Community ecology. Harper & Row, New York, pp 445–463.

    Google Scholar 

  • von Bertelanffy L (1938) A quantitative theory of organic growth. Human Biol 10:181–213.

    Google Scholar 

  • Wainwright PC (1987) Biomechanical limits to ecological performance: Mollusc-crushing by the Caribbean hogfish, Lachnolaimus maximus (Labridae). J Zool 213:283–297.

    Article  Google Scholar 

  • Wald G (1981) Metamorphosis: An overview. In: Gilbert LI, Friedan E (eds) Metamorphosis. Plenum, New York, pp 1–39.

    Chapter  Google Scholar 

  • Ware DM (1978) Bioenergetics of pelagic fish: Theoretical change in swimming speed and ration with body size. J Fish Res Board Can 35:220–228.

    Article  Google Scholar 

  • Wassersug RJ (1975) The adaptive significance of the tadpole stage with comments on the maintenance of complex life cycles in anurans. Am Zool 15:405–417.

    Google Scholar 

  • Wassersug RJ (1980) Internal oral features of larvae from eight anuran families: functional, systematic, evolutionary, and ecological considerations. Univ Kansas Mus Zool, Misc Publ 68.

    Google Scholar 

  • Wassersug RJ, Hoff K (1982) Developmental changes in the orientation of the anural jaw suspension: A preliminary exploration into the evolution of anuran metamorphosis. Evol Biol 15:223–246.

    Google Scholar 

  • Wassersug RJ, Sperry DG (1977) The relationship of locomotion to differential predation on Pseudacris triseriata (Anura: Hylidae). Ecology 58:830–839.

    Article  Google Scholar 

  • Werner EE (1977) Species packing and niche complementarity in three sunfishes. Am Nat 111:553–578.

    Article  Google Scholar 

  • Werner EE (1986a) Amphibian metamorphosis: Growth rate, predation risk, and the optimal size to transform. Am Nat 128:319–341.

    Article  Google Scholar 

  • Werner EE (1986b) Species interactions in freshwater fish communities. In: Diamond J, Case TJ (eds) Community ecology. Harper & Row, New York, pp 344–358.

    Google Scholar 

  • Werner EE, Gilliam JF (1984) The ontogenetic niche and species interactions in size-structured populations. Annu Rev Ecol Syst 15:393–425.

    Article  Google Scholar 

  • Werner EE, Hall DJ (1988) Ontogenetic habitat shifts in the bluegill sunfish (Lepomis macrochirus): The foraging rate-predation risk tradeoff. Ecology (in press).

    Google Scholar 

  • Werner EE, Gilliam JF, Hall DJ, Mittelbach GG (1983a) An experimental test of the effects of predation risk on habitat use in fish. Ecology 64:1540–1548.

    Article  Google Scholar 

  • Werner EE, Mittelbach GG, Hall DJ, Gilliam JF (1983b) Experimental tests of optimal habitat use in fish: the role of relative habitat profitability. Ecology 64:1525–1539.

    Article  Google Scholar 

  • Wilbur HM (1980) Complex life cycles. Annu Rev Ecol Syst 11:67–93.

    Article  Google Scholar 

  • Wilbur HM, Collins JP (1973) Ecological aspects of amphibian metamorphosis. Science 182:1305–1314.

    Article  PubMed  CAS  Google Scholar 

  • Williams GC (1975) Sex and evolution. Univ Press, Princeton.

    Google Scholar 

  • Willis JH, Regier JC, Debrunner BA (1981) The metamorphosis of arthropodin. In: Bhastzaran G, Friedman S, Rodriguez JG (eds) Current topics in insect endocrinology and nutrition. Plenum, New York, pp 27–46.

    Google Scholar 

  • Willson MF (1981) On the evolution of complex life cycles in plants: A review and an ecological perspective. Ann Miss Bot Gard 68:275–300.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Werner, E.E. (1988). Size, Scaling, and the Evolution of Complex Life Cycles. In: Ebenman, B., Persson, L. (eds) Size-Structured Populations. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74001-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74001-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74003-9

  • Online ISBN: 978-3-642-74001-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics