Skip to main content

Introduction

  • Chapter
  • First Online:
  • 4505 Accesses

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 54))

Abstract

In contrast to traditional solid state physics, the physical properties of thin solid films are to a large extent defined by the properties of their surfaces and internal interfaces. Despite of material properties, geometrical parameters like film thickness are therefore essential for adequate description of their properties. For accurate and reproducible adjustment of material and geometrical film properties, numerous film deposition and growth monitoring techniques have been developed and optimized.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. H. Paul: Eine Einführung in die Quantenoptik (Introduction in quantum optics). (B.G. Teubner, Stuttgart, 1995)

    Google Scholar 

  2. S. Bergia, L. Navarro, Recurrences and continuity in Einstein’s research on radiation between 1905 and 1916. Arch Hist Exact Sci 38, 79–99 (1988)

    Article  MathSciNet  Google Scholar 

  3. H.A. Macleod, Thin-Film Optical Filters, 4th edn. (CRC Press, Boca Raton, 2010)

    Google Scholar 

  4. A. Thelen, Design of Optical Interference Coatings (McGraw-Hill Book Company, New York, 1989)

    Google Scholar 

  5. M. Born, E. Wolf, Principles of Optics (Pergamon Press, New York, 1968)

    Google Scholar 

  6. H.H. Perkampus, Lexikon Spektroskopie (VCH Verlagsgesellschaft mbH, Weinheim, 1993)

    Google Scholar 

  7. S. Wolleb, Charakterisierung des Spannungsverhaltens von organisch/anorganischen Nanolaminaten und Hybridschichten, Jena, Ernst-Abbe-Fachhochschule Jena, Fachbereich SciTec, Master thesis, 2012

    Google Scholar 

  8. H.K. Pulker, Film Deposition Methods, in Optical Interference Coatings, ed. by N. Kaiser, H.K. Pulker (Springer, Berlin, 2003), pp. 131–153

    Chapter  Google Scholar 

  9. A. Hallbauer, D. Huber, G.N. Strauss, S. Schlichtherle, A. Kunz, H.K. Pulker, Overview about the optical properties and mechanical stress of different dielectric thin films produced by reactive-low-voltage-ion-plating. Thin Solid Films 516, 4587–4592 (2008)

    Article  ADS  Google Scholar 

  10. D. Riihelä, M. Ritala, R. Matero, M. Leskelä, Introducing atomic layer epitaxy for the deposition of optical thin films. Thin Solid Films 289, 250–255 (1996)

    Article  ADS  Google Scholar 

  11. M. Knez, K. Nielsch, L. Niinistö, Synthesis and surface engineering of complex nanostructures by atomic layer deposition. Adv. Mater. 19(2007), 3425–3438 (2007)

    Article  Google Scholar 

  12. A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gösele, M. Knez, Atomic layer deposition of Al2O3 and TiO2 multilayers for applications as bandpass filters and antireflection coatings. Appl. Opt. 48, 1727–1732 (2009)

    Article  ADS  Google Scholar 

  13. J. Pimenoff, Atomic layer deposition: excellence in thin film coating. Vak. Forsch. Prax. 24(6), 10–13 (2012)

    Article  Google Scholar 

  14. S. Pongratz, A. Zöller, Plasma ion assisted deposition: a promising technique for optical coatings. J. Vac. Sci. Techn. A 10, 1897–1904 (1992)

    Article  ADS  Google Scholar 

  15. H. Ehlers, K. Becker, R. Beckmann, N. Beermann, U. Brauneck, P. Fuhrberg, D. Gäbler, S. Jakobs, N. Kaiser, M. Kennedy, F. König, S. Laux, J.C. Müller, B. Rau, W. Riggers, D. Ristau, D. Schäfer, O. Stenzel, Ion assisted deposition processes: industrial network intion. SPIE Proc. 5250, 646–655 (2004)

    Article  ADS  Google Scholar 

  16. B. Schröder, R.P. Brinkmann, J. Harhausen, A. Ohl, Modelling and simulation of the advanced plasma source. J. Appl. Phys. 110, 043305-1–043305-6 (2011)

    ADS  Google Scholar 

  17. R.R. Willey, Practical Design and Production of Optical Thin Films (Marcel Dekker Inc., New York, 2002)

    Book  Google Scholar 

  18. D. Ristau, H. Ehlers, T. Gross, M. Lappschies, Optical broadband monitoring of conventional and ion processes. Appl. Opt. 45, 1495–1501 (2006)

    Article  ADS  Google Scholar 

  19. S. Wilbrandt, N. Kaiser, O. Stenzel, In situ broadband monitoring of heterogeneous optical coatings. Thin Solid Films 502, 153–157 (2006)

    Article  ADS  Google Scholar 

  20. S. Wilbrandt, O. Stenzel, N. Kaiser, All-optical in situ analysis of PIAD deposition processes. Proc. SPIE 7101, 71010D-1–71010D-11 (2008)

    Article  Google Scholar 

  21. J.D. Targove, H.A. Macleod, Verification of momentum transfer as the dominant densifying mechanism in ion-assisted deposition. Appl. Opt. 27, 3779–3781 (1988)

    Article  ADS  Google Scholar 

  22. C.A. Davis, A simple model for the formation of compressive stress in thin films by ion bombardement. Thin Solid Films 266, 30–34 (1993)

    Article  ADS  Google Scholar 

  23. F. Jenkner, Präparation von TiO2-, ZrO2- und HfO2-Schichten mittels Elektronenstrahlverdampfen, Fachhochschule Jena/Fraunhofer IOF, Bachelor thesis (2011)

    Google Scholar 

  24. O. Stenzel, S. Wilbrandt, S. Yulin, N. Kaiser, M. Held, A. Tünnermann, J. Biskupek, U. Kaiser, Plasma ion assisted deposition of hafnium dioxide using argon and xenon as process gases. Opt. Mater. Express 1, 278–292 (2011)

    Article  Google Scholar 

  25. M. Landmann, T. Köhler, S. Köppen, E. Rauls, T. Frauenheim, W.G. Schmidt, Fingerprints of order and disorder in the electronic and optical properties of crystalline and amorphous TiO2. Phys. Rev. B 86, 064201-1–064201-20 (2012)

    Article  ADS  Google Scholar 

  26. Special Materials for Precision optics & Laser Coatings: Oxides for Evaporation, Catalogue, Umicore Thin Film Products (2011)

    Google Scholar 

  27. B.A. Movchan, A.V. Demchishin, Rost i struktura tonkich tverdotelnych plenok. Phys. Met. Metallogr. 28, 83–91 (Growth and structure of thin solid films) (1969)

    Google Scholar 

  28. J.A. Thornton, Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. J. Vac. Sci. Technol. 11, 666–672 (1979)

    Article  ADS  Google Scholar 

  29. C.R.M. Grovenor, H.T.G. Hentzell, D.A. Smith, The development of grain structure during growth of metallic films. Acta Metall. 32, 773–781 (1984)

    Article  Google Scholar 

  30. R. Messier, A.P. Giri, R.A. Roy, Revised structure zone model for thin film physical structure”. J. Vac. Sci. Technol. A2, 500–503 (1984)

    Article  ADS  Google Scholar 

  31. P.B. Barna, M. Adamik, Growth mechanisms of polycrystalline thin films, in Science and technology of thin films, ed. by F.C. Matacotta, G. Ottaviani (World Scientific, Singapore, 1995), pp. 1–28

    Chapter  Google Scholar 

  32. Materials OTTI-Workshop, Schichtherstellungstechniken für die Präzisionsoptik, OTTI e.V. Regensburg January 2010

    Google Scholar 

  33. O. Stenzel, The physics of thin film optical spectra. An introduction (Springer, Berlin, 2005)

    Google Scholar 

  34. O. Stenzel, Das Dünnschichtspektrum. Ein Zugang von den Grundlagen zur Spezialliteratur (Akademie Verlag GmbH, Berlin, 1996)

    Google Scholar 

  35. J. Capoulade, L. Gallais, J.-Y. Natoli, M. Commandré, Multiscale analysis of the laser-induced damage threshold in optical coatings. Appl. Opt. 47, 5272–5280 (2008)

    Article  ADS  Google Scholar 

  36. A.V. Tikhonravov, M.K. Trubetskov, T.V. Amotchkina, G. DeBell, V. Pervak, A.K. Sytchkova, M.L. Grilli, D. Ristau, Optical parameters of oxide films typically used in optical coating production. Appl. Opt. 50, C75–C85 (2011)

    Article  Google Scholar 

  37. P. Torchio, A. Gatto, M. Alvisi, G. Albrand, N. Kaiser, C. Amra, High-reflectivity HfO2/SiO2 ultraviolet mirrors. Appl. Opt. 41, 3256–3261 (2002)

    Article  ADS  Google Scholar 

  38. G. Abromavicius, R. Buzelis, R. Drazdys, D. Perednis, A. Skrebutenas, Optimization of HfO2, Al2O3 and SiO2 deposition leading to advanced UV optical coatings with low extinction. Proc. SPIE 6596, 65961N (2007)

    ADS  Google Scholar 

  39. O. Stenzel, S. Wilbrandt, M. Schürmann, N. Kaiser, H. Ehlers, M. Mende, D. Ristau, S. Bruns, M. Vergöhl, M. Stolze, M. Held, H. Niederwald, T. Koch, W. Riggers, P. Burdack, G. Mark, R. Schäfer, S. Mewes, M. Bischoff, M. Arntzen, F. Eisenkrämer, M. Lappschies, S. Jakobs, S. Koch, B. Baumgarten, A. Tünnermann, Mixed oxide coatings for optics. Appl. Opt. 50, C69–C74 (2011)

    Article  Google Scholar 

  40. W.T. Tang, Z.F. Ying, Z.G. Hu, W.W. Li, J. Sun, N. Xu, J.D. Wu, Synthesis and characterization of HfO2 and ZrO2 thin films deposited by plasma assisted reactive pulsed laser deposition at low temperature. Thin Solid Films 518, 5442–5446 (2010)

    Article  ADS  Google Scholar 

  41. A. Kunz, A. Hallbauer, D. Huber, H.K. Pulker, Optische und mechanische Eigenschaften von RLVIP HfO2-Schichten, Vakuum in Forschung und Praxis 18(5), 12–16 (2006) (Optical and mechanical properties of RLVIP HfO2 films)

    Google Scholar 

  42. O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, M. Grössl, The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity. Thin Solid Films 517, 6058–6068 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Stenzel .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stenzel, O. (2014). Introduction. In: Optical Coatings. Springer Series in Surface Sciences, vol 54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54063-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54063-9_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54062-2

  • Online ISBN: 978-3-642-54063-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics