Skip to main content

Introduction: Historical Remarks

  • Conference paper

Part of the book series: Lecture Notes in Biomathematics ((LNBM,volume 98))

Abstract

What is maximized by natural selection? A general answer is the expected reproductive success of the individual; i.e. mean individual fitness. This basic fitness maximization principle underlies much of the modern evolutionary theory of adaptation (Fisher 1930, Williams 1966, Maynard Smith 1978). Criticism of the hypothesis of fitness maximization has, however, also been widespread (e.g. Dupré 1987).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brussard, P.F. 1991. The role of ecology in biological conservation, Ecological Applications 1: 6–12.

    Article  Google Scholar 

  • Cannings, C. 1971. Natural selection at a multiallelic autosomal locus with multiple niches, J. Genet. 60: 255–259.

    Article  Google Scholar 

  • Caraco, T., S. Martindale, and T.S. Whittam. 1980. An empirical demonstration of risk-sensitive foraging preferences, Anim. Behav. 28: 820–830.

    Article  Google Scholar 

  • Charnov, E.L. 1976. Optimal foraging: the marginal value theorem, Theoret. Pop. Biol. 9: 129–136.

    Article  CAS  Google Scholar 

  • Chesson, P.L. 1985. Coexistence of competitors in spatially and temporally varying environments: a look at the combined effects of different sorts of variability, Theoret. Pop. Biol. 28: 263–287.

    Article  Google Scholar 

  • Chesson, P.L. and R.R. Warner. 1981. Environmental variability promotes coexistence in lottery competitive systems, Amer. Nat. 117: 923–943.

    Article  Google Scholar 

  • Cohen, D. 1966. Optimizing reproduction in a randomly varying environment, J. Theoret. Biol. 12: 119–129.

    Article  CAS  Google Scholar 

  • Cohen, D. 1967. Optimizing reproduction in a randomly varying environment when a correlation may exist between the conditions at the time a choice has to be made and the subsequent outcomes, J. Theoret. Biol 16: 1–14.

    Article  CAS  Google Scholar 

  • Cohen, D. 1968. A general model of optimal reproduction in a randomly varying environment, J. Ecol. 56: 219–228.

    Article  Google Scholar 

  • Cohen, D. 1970. A theoretical model for the optimal timing of diapause, Amer. Nat. 104: 389–400.

    Article  Google Scholar 

  • Cohen, D. 1976. The optimal timing of reproduction, Amer. Nat. 110: 801–807.

    Article  Google Scholar 

  • Cohen, D., and S.A. Levin. 1991. Dispersal in patchy environments: the effects of temporal and spatial structure, Theoret Pop. Biol. 39: 63–99.

    Article  Google Scholar 

  • Cooper, W.S. 1984. Expected time to extinction and the concept of fundamental fitness, J. Theoret. Biol. 107: 603–629.

    Article  Google Scholar 

  • Cooper, W.S. and R.H. Kaplan. 1982. Adaptive “coin-flipping”: a decision-theoretic examination of natural selection for random individual variation, J. Theoret. Biol. 94: 135–151.

    Article  CAS  Google Scholar 

  • Dempster, E.R. 1955. Maintenance of genetic heterogeneity, Cold Spring Harbor Symp. Quant. Biol. 20: 25–32.

    Article  CAS  Google Scholar 

  • den Boer, P.J. 1968. Spreading of risk and stabilization of animal numbers, Acta Biotheoretica 18: 165–194.

    Article  Google Scholar 

  • Dupré, J. (ed.). 1987. The Latest on the Best: Essays in Evolution and Optimality. MIT Press, Cambridge, MA.

    Google Scholar 

  • Ellner, S. 1985. ESS germination strategies in randomly varying environments. I. Logistic-type models, Theoret Pop. Biol. 28: 50–79.

    Article  CAS  Google Scholar 

  • Fisher, R.A. 1930. The Genetical Theory of Natural Selection. Clarendon Press, Oxford.

    Google Scholar 

  • Gillespie, J.H. 1977. Natural selection for variance in offspring numbers: a new evolutionary principle, Amer. Nat. 111: 1010–1014.

    Article  Google Scholar 

  • Haidane, J.B.S. and S.D. Jayakar. 1963. Polymorphism due to selection of varying direction, J. Genet 58: 237–242.

    Article  Google Scholar 

  • Harrison, S. and J.F. Quinn. 1989. Correlated environments and the persistence of metapop-ulations, Oikos 56: 293–298.

    Article  Google Scholar 

  • Houston, A.I. and J.M. McNamara. 1988. A framework for the functional analysis of behavior, Behav. Brain Sci. 11: 117–163.

    Article  Google Scholar 

  • Lande, R. 1987. Extinction thresholds in demographic models of territorial populations, Amer. Nat 130: 624–635.

    Article  Google Scholar 

  • Lande, R. 1988. Genetics and demography in biological conservation, Science 241: 1455–1460.

    Article  PubMed  CAS  Google Scholar 

  • Levene, H. 1953. Genetic equilibrium when more than one niche is available, Amer. Nat. 87: 331–333.

    Article  Google Scholar 

  • Levin, S.A., A. Hastings and D. Cohen. 1984. Dispersal strategies in patchy environments, Theoret Pop. Biol. 26: 165–191.

    Article  Google Scholar 

  • Levins, R. 1968. Evolution in Changing Environments. Princeton University Press, Princeton, N.J.

    Google Scholar 

  • Lewontin, R.C. and D. Cohen. 1969. On population growth in a randomly varying environment, Proc. Nat. Acad. Sci. USA 62: 1056–1060.

    Article  PubMed  CAS  Google Scholar 

  • Li, C.C. 1955. The stability of an equilibrium and the average fitness of a population, Amer. Nat. 89: 281–295.

    Article  Google Scholar 

  • Mangel, M. and C.W. Clark. 1988. Dynamic Modeling in Behavioral Ecology. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Maynard Smith, J. 1978. Optimization theory in evolution, Ann. Rev. Ecol. Syst. 9: 31–56.

    Article  Google Scholar 

  • MacArthur, R.H. and E.R. Pianka. 1966. On the optimal use of a patchy environment, Amer. Nat. 100: 603–609.

    Article  Google Scholar 

  • McCauley, D.E. 1989. Extinction, colonization, and population structure: a study of the milkweed beetle, Amer. Nat 134: 365–376.

    Article  Google Scholar 

  • Monod, J. 1971. Chance and necessity. Vintage Books, New York.

    Google Scholar 

  • Mountford, M.D. 1968. The significance of litter-size, J. Anim. Ecol. 37: 363–367.

    Article  Google Scholar 

  • Murphy, G.I. 1968. Pattern in life history and the environment, Amer. Nat. 102: 390–403.

    Article  Google Scholar 

  • Oaten, A. 1977. Optimal foraging in patches: a case for stochasticity, Theoret. Pop. Biol. 12: 263–285.

    Article  CAS  Google Scholar 

  • Philippi, T. and J. Seger. 1989. Hedging one’s evolutionary bets, revisited, Trends in Evolutionary Ecology 4: 41–44.

    Article  CAS  Google Scholar 

  • Real, L. 1980. Fitness, uncertainty, and the role of diversification in evolution and behavior, Amer. Nat. 115: 623–638.

    Article  Google Scholar 

  • Real, L. and T. Caraco. 1986. Risk and foraging in stochastic environments, Ann. Rev. Ecol. Syst. 17: 371–90.

    Article  Google Scholar 

  • Root, R.B. and P.M. Kareiva. 1984. The search for resources by cabbage butterflies (Pieris rapae): Ecological consequences and adaptive significance of Markovian movements in a patchy environment, Ecology 65: 147–165.

    Article  Google Scholar 

  • Roughgarden, J. 1979. Theory of Population Genetics and Evolutionary Ecology: an Introduction. MacMillan, New York.

    Google Scholar 

  • Schaffer, W.M. 1974. Optimal reproductive effort in fluctuating environments, Amer. Nat. 108: 783–790.

    Article  Google Scholar 

  • Schoener, T.W. and D.A. Spiller. 1987. High population persistence in a system with high turnover, Science 330: 470–477.

    Google Scholar 

  • Seger, J. and J. Brockmann. 1987. What is bet-hedging? Oxford Surveys in Evolutionary Biology. 4: 182–411.

    Google Scholar 

  • Slatkin, M. 1974. Hedging one’s evolutionary bets, Nature 250: 704–705.

    Google Scholar 

  • Stearns, C.S. 1976. Life history tactics: A review of the ideas, Quart. Rev. Biol. 51: 3–47.

    Article  PubMed  CAS  Google Scholar 

  • Stephens, D.W. 1981. The logic of risk sensitive foraging preferences, Anim. Behav. 29: 628–629.

    Article  Google Scholar 

  • Stephens, D.W. 1989. Variance and the value of information, Amer. Nat. 134: 128–140.

    Article  Google Scholar 

  • Stephens, D.W. and J.R. Krebs. 1986. Foraging Theory. Princeton Univ. Press, Princeton, NJ.

    Google Scholar 

  • Tuljapurkar, S.D. 1989. An uncertain life: demography in random environments, Theoret. Pop. Biol. 35: 227–294.

    Article  CAS  Google Scholar 

  • Tuljapurkar, S.D. and S.H. Orzack. 1980. Population dynamics in variable environments I. Long-run growth rates and extinction, Theoret. Pop. Biol. 18: 314–342.

    Article  Google Scholar 

  • Verner, J. 1965. Selection for the sex ratio, Amer. Nat. 99: 419–421.

    Article  Google Scholar 

  • Via, S. and R. Lande. 1985. Genotype-environment interaction and the evolution of phenotypic plasticity, Evolution 39: 505–522.

    Article  Google Scholar 

  • Williams, G.C. 1966. Adaptation and Natural Selection. Princeton Univ. Press, Princeton, NJ.

    Google Scholar 

  • Yoshimura, J. and C.W. Clark. 1991. Individual adaptations in stochastic environments, Evol. Ecol. 5: 173–192.

    Article  Google Scholar 

  • Yoshimura, J. and W.M. Shields. 1987. Probabilistic optimization of phenotype distributions: a general solution for the effects of uncertainty on natural selection? Evol. Ecol. 1: 125–138.

    Article  Google Scholar 

  • Yoshimura, J. and W.M. Shields. 1992. Components of uncertainty in clutch-size optimization, Bull. Math. Biol. 54: 445–464.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yoshimura, J., Clark, C.W. (1993). Introduction: Historical Remarks. In: Yoshimura, J., Clark, C.W. (eds) Adaptation in Stochastic Environments. Lecture Notes in Biomathematics, vol 98. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-51483-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-51483-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56681-6

  • Online ISBN: 978-3-642-51483-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics