Skip to main content

Mechanism of ketone hydrosilylation using NHC–Cu(I) catalysts: a computational study

  • Regular Article
  • Chapter
  • First Online:
Theoretical Chemistry in Belgium

Part of the book series: Highlights in Theoretical Chemistry ((HITC,volume 6))

  • 1077 Accesses

Abstract

The plausibility of the catalytic cycle suggested for the hydrosilylation of ketones by (NHC) copper( I) hydrides has been investigated by a theoretical DFT study. Model systems yield the necessary insight into the intrinsic reactivity of the system. Computations show the activation of the copper fluoride pre-catalyst, as well as both steps of the catalytic cycle to involve a 4-center metathesis transition state as suggested in the literature. These results show the reaction to be favored by the formation of van der Waals complexes resembling the transition states. Stabilizing electrostatic interactions between those atoms involved in the bond-breaking and bondforming processes induces the formation of these latter. Both steps of the actual catalytic cycle show a free energy barrier of about 14.5 kcal/mol for the largest NHC ligands, with respect to the isolated reactants, hereby confirming the plausibility of the suggested cycle. The large overall exothermicity of the catalytic cycle of about 35 kcal/mol is in agreement with experimental observations.

Published as part of the special collection of articles celebrating theoretical and computational chemistry in Belgium

Electronic supplementary material The online version of this article (doi:10.1007/s00214-012-1245-4) contains supplementary material, which is available to authorized users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Smith MB, March J (2001) March’s advanced organic chemistry. Wiley, New York

    Google Scholar 

  2. Ohkuma T, Noyori R (1999) Hydrogenation of carbonyl groups. In: Jacobsen EN, Pfaltz A, Yamamoto H (eds) Comprehensive asymmetric catalysis. Springer, Berlin, pp 199–246

    Google Scholar 

  3. Nishiyama H, Itoh K (2000) Asymmetric hydrosilylation and related reactions. In: Ojima I (ed) Catalytic asymmetric synthesis. Wiley, New York, pp 111–144

    Google Scholar 

  4. Corey EJ, Helal CJ (1998) Angew Chem Int Ed 37:1986–2012

    CAS  Google Scholar 

  5. Marciniec B, Maciejewski H, Pietraszuk C, Pawluc´ P (2009) Advances in silicon science, vol 1: hydrosilylation a comprehensive review on recent advances. Springer, Berlin

    Google Scholar 

  6. Ojima I, Nihonyanagi M, Nagai Y (1972) J Chem Soc Chem Commun 1972:938–938

    Google Scholar 

  7. Langlois N, Dang TP, Kagan HB (1973) Tetrahedron Lett 49: 4865–4868

    Google Scholar 

  8. Dumont W, Poulin J-C, Kagan HB (1973) J Am Chem Soc 95:8295–8299

    CAS  Google Scholar 

  9. Du G, Abu-Omar MM (2006) Organometallics 25:4920–4923

    CAS  Google Scholar 

  10. Ison EA, Trivedi ER, Corbin RA, Abu-Omar MM (2005) J Am Chem Soc 127:15374–15375

    CAS  Google Scholar 

  11. Nolin KA, Krumper JR, Pluth MD, Bergman RG, Toste FD (2007) J Am Chem Soc 129:14684–14696

    CAS  Google Scholar 

  12. Gade LH, Cesar V, Bellemin-Laponnaz S (2004) Angew Chem Int Ed 43:1014–1017

    CAS  Google Scholar 

  13. Nishiyama H, Sakaguchi H, Nakamura T, Horihata M, Kondo M, Itoh K (1989) Organometallics 8:846–848

    CAS  Google Scholar 

  14. Tao B, Fu GC (2002) Angew Chem Int Ed 41:3892–3894

    CAS  Google Scholar 

  15. Sawamura M, Ryoichi K, Ito Y (1994) Angew Chem Int Ed 33: 111–113

    Google Scholar 

  16. Zhu G, Terry M, Zhang X (1997) J Organomet Chem 547: 97–101

    CAS  Google Scholar 

  17. Nishibayashi Y, Takei I, Uemura S (1998) Organometallics 17:3420–3422

    CAS  Google Scholar 

  18. Chianese AR, Crabtree RH (2005) Organometallics 25:3066– 3073

    Google Scholar 

  19. Nakano T, Nagai Y (1988) Chem Lett 17:481–484

    Google Scholar 

  20. Carter MB, SchiOtt B, Gutie´rrez A, Buchwald SL (1994) J Am Chem Soc 116:11667–11670

    CAS  Google Scholar 

  21. Halterman R, Ramsey TM, Chen Z (1994) J Org Chem 59: 2642–2644

    CAS  Google Scholar 

  22. Xin S, Harrod JF (1995) Can J Chem 73:999–1002

    CAS  Google Scholar 

  23. Bandini M, Bernardi F, Bottoni A, Cozzi PG, Miscione GP, Umani-Ronchi A (2003) Eur J Org Chem 2003:2972–2984

    Google Scholar 

  24. Imma H, Mori M, Nakai T (1996) Syn Lett 1996:1229–1230

    Google Scholar 

  25. Mandini M, Cozzi PG, Nego L, Umani-Ronchi A (1999) Chem Comm 1999:39–40

    Google Scholar 

  26. Yun J, Buchwald SL (1999) J Am Chem Soc 121:5640–5644

    CAS  Google Scholar 

  27. Brunner H, Fisch K (1990) Angew Chem Int Ed 29:1131–1132

    Google Scholar 

  28. Shaikh NS, Enthaler S, Junge K, Beller M (2008) Angew Chem Int Ed 47:2497–2501

    CAS  Google Scholar 

  29. Langlotz BK, Wadepohl H, Gade LH (2008) Angew Chem Int Ed 41:4670–4674

    Google Scholar 

  30. Son SU, Paik S-J, Lee IS, Lee Y-A, Chung YK (1999) Organometallics 18:4114–4118

    CAS  Google Scholar 

  31. DiBiase Cavanaugh M, Gregg BT, Cutler AR (1996) Organometallics 15:2764–2769

    Google Scholar 

  32. Mimoun H, de Saint Laumer JY, Giannini L, Scopelliti R, Floriani C, Am J (1999) Chem Soc 121:6158–6166

    CAS  Google Scholar 

  33. Mimoun H (1999) J Org Chem 64:2582–2589

    CAS  Google Scholar 

  34. Ohkuma T, Hashiguchi S, Noyori R (1994) J Org Chem 59: 217–221

    CAS  Google Scholar 

  35. Bette V, Mortreux A, Savoia D, Carpentier J-F (2004) Tetrahedron 60:2837–2842

    CAS  Google Scholar 

  36. Brunner H, MiehlingW(1984) J Organomet Chem 275:C17–C21

    Google Scholar 

  37. Lipshutz BH, Chrisman W, Noson K (2001) J Organomet Chem 624:367–371

    CAS  Google Scholar 

  38. Wu J, Ji J-X, Chan ASC (2005) Proc Nat Acad Sci 102: 3570–3575

    CAS  Google Scholar 

  39. Lee D-W, Yun J (2004) Tetrahedron Lett 45:5415–5417

    CAS  Google Scholar 

  40. Issenhuth JT, Dagorne S, Bellemin-Laponnaz S (2006) Adv Synth Catal 348:1991–1994

    CAS  Google Scholar 

  41. Riant O, Mostefaï N, Courmarcel J (2004) Synthesis 18:2943– 2958

    Google Scholar 

  42. Lipshutz BH (2002) Copper(I)-mediated 1,2- and 1,4-Reductions. In: Krause N (ed) Modern organocopper chemistry. Wiley-VCH, Weinheim, pp 167–187

    Google Scholar 

  43. Riant O (2009) Copper(I) hydride reagents and catalysts. In: Rappoport Z, Marek I (ed) The chemistry of organocopper compounds. Wiley, pp 731–773

    Google Scholar 

  44. Lipshutz BH, Noson K, Chrisman W (2001) J Am Chem Soc 123:12917–12918

    CAS  Google Scholar 

  45. Lipshutz BH, Lower A, Noson K (2002) Org Lett 4:4045–4048

    CAS  Google Scholar 

  46. Lipshutz BH, Caires CC, Kuipers P, Chrisman W (2003) Org Lett 5:3085–3088

    CAS  Google Scholar 

  47. Lipshutz BH, Frieman BA (2005) Angew Chem 117:6503–6506

    Google Scholar 

  48. Lipshutz BH, Frieman BA (2005) Angew Chem Int Ed 44:6345– 6348

    CAS  Google Scholar 

  49. Czekelius C, Carreira EM (2004) Org Lett 6:4575–4578

    CAS  Google Scholar 

  50. Sirol S, Courmarcel J, Mostefaï N, Riant O (2001) Org Lett 3: 4111–4113

    CAS  Google Scholar 

  51. Courmarcel J, Mostefaï N, Sirol S, Choppin S, Riant O (2001) Isr J Chem 41:231–240

    CAS  Google Scholar 

  52. Mostefaï N, Sirol S, Courmarcel J, Riant O (2007) Synthesis 8:1265–1271

    Google Scholar 

  53. Yu F, Zhou JN, Zhang XC, Sui YZ, Wu FF, Xie LJ, Chan ASC, Wu J (2011) Chem Eur J 17:14234–14240

    CAS  Google Scholar 

  54. Díez-González S, Nolan SP (2005) Annu Rep Prog Chem Sect B 101:171–191

    Google Scholar 

  55. Herrmann WA (2002) Angew Chem Int Ed 41:2162–2187

    Google Scholar 

  56. Bourissou D, Guerret O, Gabbai FP, Bertrand G (2000) Chem Rev 100:39–91

    CAS  Google Scholar 

  57. Arduengo AJ III (1999) Acc Chem Res 32:913–921

    CAS  Google Scholar 

  58. Arduengo AJ III, Harlow RL, Kline M (1991) J Am Chem Soc 113:361–363

    CAS  Google Scholar 

  59. Navarro O, Kelly RA III, Nolan SP (2003) J Am Chem Soc 125:16194–16195

    CAS  Google Scholar 

  60. Viciu MS, Germaneau RF, Nolan SP (2002) Org Lett 4: 4053–4056

    CAS  Google Scholar 

  61. Lee CW, Choi T-L, Grubbs RH (2002) J Am Chem Soc 124: 3224–3225

    CAS  Google Scholar 

  62. Herrmann WA, Bohm VPW, Gstottmayr CWK, Grosche M, Reisinger CP, Weskamp TJ (1999) Organomet Chem 586: 563–565

    Google Scholar 

  63. Kaur H, Zinn FK, Stevens ED, Nolan SP (2004) Organometallics 23:1157–1160

    CAS  Google Scholar 

  64. Díez-González S, Kaur H, Zinn FK, Stevens ED, Nolan SP (2005) J Org Chem 70:4784–4796

    Google Scholar 

  65. Yun J, Kim D, Yun H (2005) Chem Comm 2005:5181–5183

    Google Scholar 

  66. Díez-González S, Scott NM, Nolan SP (2006) Organometallics 25:2355–2358

    Google Scholar 

  67. Díez-González S, Stevens ED, Scott NM, Petersen JL, Nolan SP (2008) Chem Eur J 14:158–168

    Google Scholar 

  68. Vergote T, Nahra F, Welle A, Luhmer M, Wouters J, Mager N, Riant O, Leyssens T (2012) Chem Eur J 18:793–798

    CAS  Google Scholar 

  69. Albright A, Gawley RE (2011) J Am Chem Soc 133:19680– 19683

    CAS  Google Scholar 

  70. Díez-González S, Nolan SP (2008) Acc Chem Res 41:349–358

    Google Scholar 

  71. Díez-González S, Nolan SP (2008) Aldrichimica Acta 41:43–51

    Google Scholar 

  72. Ito H, Ishizuka T, Okumura T, Yamanaka H, Tateiwa J-I, Sonoda M, Hosomi A (1999) J Organomet Chem 574:102–106

    CAS  Google Scholar 

  73. Mankad NP, Laitar DS, Sadighi JP (2004) Organometallics 23:3369–3371

    CAS  Google Scholar 

  74. Gathy T, Peeters D, Leyssens T (2009) J Organomet Chem 694: 3943–3950

    CAS  Google Scholar 

  75. Gathy T, Leyssens T, Peeters D (2011) Comp Theor Chem 970: 23–29

    CAS  Google Scholar 

  76. Gathy T, Riant O, Peeters D, Leyssens T (2011) J Organomet Chem 696:3425–3430

    CAS  Google Scholar 

  77. Issenhuth J-T, Notter F-P, Dagorne S, Dedieu A, Bellemin-Laponnaz S (2010) Eur J Inorg Chem 2010:529– 541

    Google Scholar 

  78. Zhang W, Li W, Qin S (2012) Org Biomol Chem 10:597–604

    CAS  Google Scholar 

  79. Becke AD (1993) J Chem Phys 98:5648–5653

    CAS  Google Scholar 

  80. Lee C, Yang W, Parr RG (1988) Phys Rev B37:785–789

    Google Scholar 

  81. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision C.02. Gaussian, Wallingford

    Google Scholar 

  82. Fukui K (1970) J Phys Chem 74:4163–6161

    Google Scholar 

  83. Fukui K (1981) Acc Chem Res 14:363–368

    CAS  Google Scholar 

  84. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154–2161

    CAS  Google Scholar 

  85. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523–5527

    CAS  Google Scholar 

  86. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104–154123

    Google Scholar 

  87. Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283

    CAS  Google Scholar 

  88. Hay PJ, Wadt WR (1985) J Chem Phys 82:284–298

    Google Scholar 

  89. Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310

    CAS  Google Scholar 

  90. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257– 2261

    CAS  Google Scholar 

  91. Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213–222

    CAS  Google Scholar 

  92. Foster JP, Weinhold F (1980) J Am Chem Soc 102:7211–7218

    CAS  Google Scholar 

  93. Reed AE, Weinhold F (1983) J Chem Phys 78:4066–4073

    CAS  Google Scholar 

  94. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83: 735–746

    CAS  Google Scholar 

  95. Reed AE, Weinhold F (1985) J Chem Phys 83:1736–1740

    CAS  Google Scholar 

  96. Keith T, Millam J (2006) Gaussview, version 4.1.2, R. Dennington, II, Semichem, Inc., Shawnee

    Google Scholar 

  97. Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297– 3305

    CAS  Google Scholar 

  98. Perdew JP (1986) Phys Rev B 33:8822–8824

    Google Scholar 

  99. Becke AD (1988) Phys Rev A 38:3098–3100

    CAS  Google Scholar 

  100. Perdew JP (1991) Beyond the local density approximation. In: Ziesche P, Esching H (eds) Electronic structure of solids ’91. Akademie Verlag, Berlin, pp 11–20

    Google Scholar 

  101. Adamo C, Barone V (1998) J Chem Phys 108:664–675

    CAS  Google Scholar 

  102. Quintal MM, Karton A, Iron MA, Boese AD, Martin JML (2006) J Phys Chem 110:709–716

    CAS  Google Scholar 

  103. Sousa SF, Fernandes PA, Ramos MJ (2007) J Phys Chem A 111: 10439–10452

    CAS  Google Scholar 

  104. Schultz NE, Zhao Y, Truhlar DG (2005) J Phys Chem A 109: 11127–11143

    CAS  Google Scholar 

  105. Roy LE, Hay PJ, Martin RL (2008) J Chem Theory Comput 4: 1029–1031

    CAS  Google Scholar 

  106. Ehlers AW, Bihme M, Dapprich S, Gobbi A, Hollwaerth A, Jonas V, Kokler KF, Stegmann R, Veldkamp A, Frenking G (1993) Chem Phys Lett 208:111–114

    CAS  Google Scholar 

  107. Bergner A, Dolg M, Kuechle W, Stoll H, Preuss H (1993) Mol Phys 80:1431–1441

    CAS  Google Scholar 

  108. Kaupp M, Schleyer PVR, Stoll H, Preuss H (1991) J Chem Phys 94:1360–1366

    CAS  Google Scholar 

  109. Dolg M, Stoll H, Preuss H, Pitzer RM (1993) J Phys Chem 97: 5852–5859

    CAS  Google Scholar 

  110. Mahonney WS, Bretensky DM, Stryker JM (1988) J Organomet Chem 110:291–294

    Google Scholar 

  111. Wiberg K (1968) Tetrahedron 24:1083–1096

    CAS  Google Scholar 

  112. Moyano A, Pericas M, Valenti E (1989) J Org Chem 54: 573–582

    CAS  Google Scholar 

  113. Lecea B, Arrieta A, Roa G, Ugalde J, Cossio F (1994) J Am Chem Soc 116:9613–9619

    CAS  Google Scholar 

  114. Heredia MM, Lorono M, Cordova T, Chuchani G (2005) J Mol Struct: Theochem 770:131–137

    Google Scholar 

  115. Cavallo L, Correa A, Costabille C, Jacobsen H (2005) J Organomet Chem 690:5407–5413

    CAS  Google Scholar 

  116. Hillier AC, Sommer WJ, Yong BS, Petersen JL, Cavallo L, Nolan SP (2003) Organometallics 22:4322– 4326

    CAS  Google Scholar 

  117. Bazinet P, Ong T-G, O’Brien JS, Lavoie N, Bell E, Yap GPA, Korobkov I, Richeson DS (2007) Organometallics 26:2885– 2895

    CAS  Google Scholar 

  118. Fortman GC, Scott NM, Linden A, Stevens ED, Dorta R, Nolan SP (2010) Chem Comm 46:1050–1052

    CAS  Google Scholar 

  119. Clavier H, Correa A, cavallo L, Escuerdo-Adán EC, Benet- Buchholz J, Slawin AMZ, Nolan SP (2009) Eur J Inorg Chem 2009:1767–1773

    Google Scholar 

  120. Viciu MS, Navarro O, Germaneau RF, Kelly RA III, Sommer W, Marion N, Stevens ED, Cavallo L, Nolan SP (2004) Organometallic 23:1629–1635

    CAS  Google Scholar 

  121. Dorta R, Stevens ED, Scott NM, Costabile C, Cavallo L, Hoff CD, Nolan SP (2005) J Am Chem Soc 127:2485–2495

    CAS  Google Scholar 

  122. Kelly RA III, Clavier H, Giudice S, Scott NM, Stevens ED, Bordner J, Samardjiev I, Hoff CD, Cavallo L, Nolan SP (2008) Organometallics 27:202–221

    CAS  Google Scholar 

  123. Urbina-Blanco CA, Bantreil X, Clavier H, Slawin AMZ, Nolan SP (2010) Beilstein J Org Chem 6:1120–1126

    CAS  Google Scholar 

  124. Poater A, Cosenza B, Correa A, Giudice S, Ragone F, Scarano V, Cavallo L (2009) Eur J Inorg Chem 2009:1759–1766

    Google Scholar 

  125. http://www.molnac.unisa.it/OMtools/sambvca.php

    Google Scholar 

  126. Available free of charge at: http://openbabel.sourceforge.net

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Leyssens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vergote, T., Gathy, T., Nahra, F., Riant, O., Peeters, D., Leyssens, T. (2014). Mechanism of ketone hydrosilylation using NHC–Cu(I) catalysts: a computational study. In: Champagne, B., Deleuze, M., De Proft, F., Leyssens, T. (eds) Theoretical Chemistry in Belgium. Highlights in Theoretical Chemistry, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41315-5_12

Download citation

Publish with us

Policies and ethics