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Abstract. Segmentation schemes such as hierarchical region merging or
correllation clustering rely on edge weights between adjacent (super-)voxels. The
quality of these edge weights directly affects the quality of the resulting seg-
mentations. Unstructured learning methods seek to minimize the classification
error on individual edges. This ignores that a few local mistakes (tiny bound-
ary gaps) can cause catastrophic global segmentation errors. Boundary evidence
learning should therefore optimize structured quality criteria such as Rand Error
or Variation of Information. We present the first structured learning scheme us-
ing a structured loss function; and we introduce a new hierarchical scheme that
allows to approximately solve the NP hard prediction problem even for huge vol-
ume images. The value of these contributions is demonstrated on two challenging
neural circuit reconstruction problems in serial sectioning electron microscopic
images with billions of voxels. Our contributions lead to a partitioning quality that
improves over the current state of the art.

1 Introduction

Connectomics requires extremely accurate circuit reconstruction because minor local
mistakes can lead to catastrophic global connectivity errors. Automatic methods that
achieve the required accuracy level and scale to huge datasets are still an open prob-
lem. When segmentation is based on electron microscopy volume images, one must
exclusively rely on boundary evidence, because the desired regions (neurons) cannot be
differentiated on the basis of appearance features.

For such partitioning problems, correlation clustering [3/4]], or multicut segmentation
[5]], is a powerful paradigm [6J7U819U10I1111]]. An image is represented as a weighted re-
gion adjacency graph of (super)-voxels. Positive edge weights indicate that the incident
regions should be merged; negative weights that they should be kept separate. An opti-
mal segmentation makes binary decisions for each edge so as to minimize the total cut
weight, subject to the constraint of producing a topologically consistent solution [5].
The quality of the resulting segmentation depends critically on the edge weights, which
are some function of features computed from the raw data. We focus on learning such
weights using a cutting-planes approach. In each iteration, a structured loss is used to
compare the segmentations obtained from the current weights to the gold standard.

Ideally, [12/13], the loss function takes the entire segmentation into account (Fig. [T)).
Unfortunately, such loss functions do not decompose over the binary decisions for in-
dividual edges, prohibiting efficient inference. This is why previous work has resorted
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Fig. 1. Segmentation quality is commonly measured by Rand Error and Variation of Infor-
mation which capture (in contrast to the Hamming error HE) not only local segmentation quality,
but also some global structural correctness. (b) Gold standard for supervoxel segmentation: white
edges are correct, black edges incorrect. (¢) A single missed edge (arrow) has the catastrophic
global consequence of merging the two adjacent regions (resulting in the red segment). (d) The
slightly displaced boundary (arrow) produces a large HE, but small RE or V1.

Fig.2. (a) 2D slice through a 3D cell complex
representation. (b) “dangling” surfaces can be
detected locally. (c) More efficient enumeration
uses the colored lines and their bounded sur-
faces

to merely counting the number of deviating edge decisions between gold standard and
current prediction [[7]]. Fig. @l shows that better results can be achieved when a structured
loss function is used during training. Various attempts have been made to train struct-
SVMs with more complex loss functions, but these approaches are tailored to specific
applications [[14]], or use approximation techniques that do not apply to RE and VI [13].

Our first contribution (Sec. 2)) is to allow arbitrary structured loss functions, such
as Rand Error (RE) or Variation of Information (VI) during struct-SVM training on
moderately-sized neighborhoods. This is made possible by a non-redundant and
efficient exhaustive enumeration of segmentations. Our second contribution is a hi-
erarchical, blockwise scheme for the structured prediction on large volumes. It pro-
duces segmentations that are empirically close to optimal (Sec.[3). Experiments on two
different electron microscopy volume images of neural tissue show that the proposed
method can improve upon unstructured learning using SVM or random forest classifiers

(Sec.[).

2 Structured Learning for Segmentation

Following [[8]], we work in a dual representation which specifies a segmentation in terms
of binary labels y pertaining to boundaries between supervoxels. However, not every
candidate configuration y € {0, 1}/2! (where |Cy| is the number of boundaries) repre-
sents a valid segmentation: if y; = 1 (boundary is correct) but the adjacent supervoxels
belong to the same region (i.e. there exists a path between these supervoxels along
which all y;, are labeled y;, = 0), y is inconsistent, (Figs. [It and Bb). All consistent
y form the set of multicuts MC [J3]]. Region labels are easily determined by connected
components. The alternative approach to assign region labels directly (primal represen-
tation) leads to a much larger search space, see Tab.[Il
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We employ a structured risk minimization formulation in order to learn suitable edge
weights from training data. Structural risk minimization aims at finding a regularized
predictor that minimizes the empirical loss [16]. Training samples ™ are connected
components of surfaces with the gold standard labeling y™. Sample « and any labeling
y are described by a joint feature vector ¢(x,y) € RM. The optimal multicut segmen-
tation y* according to a structured SVM model [[16] is then given by
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The model is trained by finding optimal weights w*. A(y™, y) measures the deviation
of y from the gold standard (e.g. by using RE or VI). Hyperparameter A trades off the
regularization and data terms. How should ¢(x, y) be chosen? The objective is linear in
the edge weights 8 subject to exponentially many constraints restricting y to multicuts:

min (6, y) subject to y € MC. (3)
y

We seek to optimize the edge weights 8 indirectly by choosing optimal feature weights
in the ansatz §; =< w, a® > where a(?) is a suitable feature vector associated with
each edg‘ This yields after an exchange of summation order
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The joint feature vector ¢(x, y) has length M, the number of features for each surface:
|C2] |C2]

oy = oy Za(” yi | 5)
i=1

The key operation for determining optimal weights in (@) is the maximization over
all feasible segmentations in I (w), i.e. the identification of the most violated constraint.
In this paper we investigate how this can be done by exhaustive search on as large a
subset of the data as possible. We explain our approach to the efficient enumeration of
segmentations by means of 2D grids, but the findings likewise apply to 3D supervoxels,
which are used in the experiments.

Tab. [l shows the ratio between the number of true segmentations S and the number
of possible configurations for different grid sizes: SP are the number of candidates that
would have to be enumerated using the primal representation, SD for the dual represen-
tation and SDI for an improved dual enumeration described below. Apparently, S/SDI

! Note that w is learned from entire configurations, whereas existing methods [8I1I11] learn a
probabilistic model p(yi|a?)) for individual edges and then define

0; = log p(y;=0la”) / log p(y: =1]a'™). )
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Table 1. For a nxm pixel patch, the ratiobe-  nxm 2I€2l s/sp §/SD  S/SDI
tween the number of feasible segmentations 3 3 4096  0.0219 03501  0.6224
S and the number of candidate conﬁguratl(?ns 4x3 131072 0.0066 02119  0.5024
(SP, SD or SDI) depends on the enumeration 44 16777216 00016 0.1008  0.4249
technique

5 x4 2°147°483°648  0.0004 0.0480  0.2695

achieves the best ratio, i.e. the least work is wasted for solutions that are ultimately re-
jected. In the dual representation, when exhaustively enumerating all binary vectors y,
an inconsistent configuration (y ¢ MC) can be identified by connected component la-
beling, which is expensive. Fortunately, many inconsistent configurations (those which
contain one or more “dangling” surfaces, Fig. 2b) can be identified more simply.

Efficient and unambigous enumeration is greatly facilitated by a cell complex data
structure [17]. It represents entities of different dimensionality simultaneously along
with their bounding relations: supervoxels c3 € Cs are bounded by joint-faces be-
tween pairs of adjacent supervoxels co € Co which in turn are bounded by joint-
lines ¢; € C7 between adjacent faces. Our 2D illustrations should be understood as
slices through 3D data: surfaces appear as lines and joint-lines between surfaces ap-
pear as points (Fig. 2h). A line ¢; is formed where multiple ¢ € bounds(c;) meet.
(green line € bounds(green dot) in Fig. k). We first find a — preferably maximal — set
of lines C1, such that the sets bounds(c} ), ¢} € C} are mutually disjoint. (Fig. Zc: C}
consists of all colored dots).

The surfaces ¢z € bounds(c}) must be assigned a consistent labeling in order for
y € MC to hold: the configurations (1,0,0,0), (0,1,0,0), (0,0,1,0) and (0,0,0,1) are
already locally inconsistent (a “dangling” surface). Any y in which these configurations
occur for one or more of the sets bounds(c}), ¢; € C] can be excluded from the
enumeration (improved dual enumeration, DI). Using DI, we only need the expensive
connected components check on a tiny fraction of the actual number of segmentations.
This way we can handle larger subsets.

In a supervoxel segmentation, due to the voxel grid topology, either three or four
surfaces meet to form a line ¢;. We first find an approximately maximal set C. Then
candidate configurations y that are locally consistent are enumerated. Each locally con-
sistent candidate is checked if it is globally consistent by connected component labeling.
In our C++ implementation, each segmentation with |C| < 32 is stored efficiently as a
4-byte integer. The enumeration via C] is implemented via fast bitwise operations.

3 Structured Prediction

As (@) is NP-hard [3]}, in practice a solution cannot be found if the weights make for a
“difficult” problem (Fig. dlleft) or the number of variables is too large. Given weights 6
obtained with structured learning, the global optimum of the multicut objective is found
using the integer linear programming approach of [1]]. In our experiments, only prob-
lems with about 10 variables could be optimized in reasonable time, while we would
like to run structured prediction on problems which are several orders of magnitude
larger. We therefore propose a hierarchical blockwise optimization scheme. Given an
oversegmentation C and weights @ we divide the problem into subproblems via blocks.
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E Fig.3. Above: Histogram of the number of
] (unique) segmentations for the 200 training
] samples from the mouse dataset. These sizes
o0 “‘iumﬁ’:; of Se';‘menlgﬁﬁoni’ R are still sufficiently small for storage and ex-
ﬁ . Q— H haustive search. Below: Dividing a supervoxel
b= L

i segmentation into blocks (left: B, right: Bs).
Dashed blue lines indicate the unshifted block-
ing B, of the pixels, dashed red lines the
T shifted blocking Bs. The set 0C2 of surfaces

'lﬂ_.lﬁ— separating adjacent blocks is shown with bold
magenta lines.
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B., (unshifted blocking) is a partitioning of the volume into rectangular blocks with
shape L = (L1, Lo, L3). B, is a blocking which is shifted by L/2.

For the chosen blocking B, each supervoxel is uniquely assigned to the block of
smallest scan-order index b € BB with which it intersects (creating a supervoxelized
blocking of the volume, Fig. [ right). Let C5(b) be the set of supervoxels assigned to
block b and C(b) the set of all surfaces which bound at least one of these supervoxels.
0C5(b) C Cy(b) forms b’s surface.

For hierarchy level 1, an initial block shape L is chosen. We start with an unshifted
blocking B,,. For each block b, the optimization problem (@) is solved, subject to the
additional constraints that surfaces ca ¢ C3(b) are assigned zero and ¢ € 9C5(b) are
assigned one. Effectively, this reduces the problem size to |C2(b)| variables. Results
from all blocks are combined via binary OR to yield a result y(B,,). As each subprob-
lem yields a consistent solution, and all surfaces separating the blocks have y; = 1,
the entire state y(B,,) is consistent. The procedure is repeated with a shifted blocking
B, yielding y(B,). A vector y(!) for the first hierarchy level is obtained by binary OR
of y(B,,) and y(B,). As an intersection of two segmentations, y¥*) € MC. Combin-
ing B, and B, considerably reduces boundary artifacts, see Fig. 4] right. All variables
y; = 0 are removed from the problem. We then obtain a new cell complex C’ (hierarchy
level 2) by a connected component labeling of the 1,2, and 3-cells in C, and a bijection
M(C) — C’ mapping between the entities of level 1 and 2. C’ consists of fewer, but
bigger lines, surfaces and segments. New weights 6(c’) for ¢’ € C’ are computed by
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Fig. 4. Left: Increasing sign noise on the weights 8 simulates “difficult” weights. With increasing
noise, the runtime for obtaining a globally optimal solution explodes. However, if the hierarchical
blocked algorithm is used, overall runtime is substantially reduced. Middle: the quality of the ap-
proximation degrades very slowly, as measured by the energy gap and Hamming distance relative
to the optimal solution. Right: Effect of blocksize on runtime and accuracy.
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Fig. 5. Left: Mouse dataset (above)
and, drosophila dataset (below),
with gold standard segmentations.
Right: Segmentation result (show-
ing only 900 objects) with struc-
tured prediction on 10® supervoxels
with 107 variables, using blockwise
hierarchical optimization.

0. = Zce M-1(e") .. Finally, the block size is increased, and the above scheme is ap-
plied to C’. In this way, a hierarchy of N levels is created. The final optimization uses
no blocking. This algorithm can be parallelized and performs well empirically (Sec. ).

4 Experiments

The first dataset, (Fig.[3 top left) shows part of adult mouse cerebral cortex at 20nm?
voxel size (SBEM imaging). The sample was prepared to preserve extracellular space
and to suppress intracellular organelle contrast. A 200x300x150 subset was segmented
into 185 segments as gold standard. The second dataset, (Fig. [5 bottom left) shows a
part of Drosophila medulla (voxel size 10 nm3, FIBSEM imaging). Here, organelles
such as mitochondria are also stained. 49 blocks of 100? have been partially segmented
(covering about 2/3 of each volume) as gold standardd. Note that both datasets have
isotropic voxel size and are therefore amenable to a true 3D approach, as opposed to
thick slice data, such as from TEM imaging.

A watershed transform yields an oversegmentation. Then, the voxel ground-truth is
projected onto these supervoxels to create ground-truth for co € C'5. The feature vector
a(? describes a surface ¢, which separates two adjacent supervoxels ¢4 and cZ. Given
different voxel features (smoothed data, 1% and 2" derivative filters), several statistics
over the voxels near the surface are computed. Additional features include topological
and geometric features such as size(cy), | size(c4) — size(cf)|, ratio between circum-
ference to area of co and number of adjacent surfaces.

The gold standard of each dataset is divided into training and test blocks. We sam-
ple connected components of |Cs| ~ 27 surfaces and their gold standard labeling to
create training samples (™, y™), n = 1...200. In order to maximize the number of
supervoxels involved in each sample, we only consider, for each sample, surfaces that
intersect the same axis-aligned plane. To capture the asymmetric distribution of edges
y; = 0 versus y; = 1, the sampling algorithm attempts to obtain samples with a ratio
of p(y; = 1)/p(y; = 0) estimated from the gold standard segmentation.

Enumerating all (hundreds of thousands, see Fig. 3] segmentations for one sample
takes only about a second, thanks to the efficient enumeration from Sec. 2l About 3
seconds are needed to precompute different loss functions (RE, VI, Hamming). Both the
list of segmentations (compressed to 4 bytes per segmentation) and the losses are stored

2 Groundtruth for both datasets can be found on the first authors homepage.
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Fig. 6. VI and RE (lower is better) as a function of the regularization parameter A. Results have
been averaged over multiple blocks. For struct-SVM, using the structured loss functions VI “x”
or RE “o” gives substantially better results than the unstructured Hamming loss “[J”.

on disk to be reused during structured learning. Fig. [Blshows that, for most samples, we
have to consider about half a million possible segmentations. Finally the vector ¢(x, y)
is precomputed for all training samples. When the separation oracle asks for the most
violated constraint during cutting-plane training, we only need to compute a dot product
of the current weight vector and ¢ for each segmentation and look up the segmentation’s
loss w.r.t. the gold standard. In addition, it parallelizes easily. Training usually needs
about 200 iterations for convergence on 8 CPUs and takes about 20 minutes.

For prediction, the trained model is optimized on several blocks taken from the test
portion of each dataset. We compare our results to unstructured methods. Different
binary classifiers are trained using a training set which consists of the union of all
surfaces involved in any training sample and their gold standard label. For random forest
and regression forest classifiers, the probabilistic output is transformed into weights
0 via {@); for linear SVM and RBF SVM classifiers, the weights are taken to be the
distance from the margin. Hyperparameters (regression forest: tree depth; linear SVM:
regularization strength A; RBF SVM: ~, )) are optimized via cross-validation.

Fig. @ shows VI and RE, averaged over multiple test blocks as a function of the regu-
larization parameter \ with respect to the performance of unstructured methods. For the
mouse dataset our approach is able to outperform both an unstructured learning of 6 as
well as structured learning with decomposable Hamming loss, while being insensitive
to the exact choice of hyperparameter A. Choosing either VI and RE loss during learning
yields similar performance (as measured by VI or RE) with respect to the gold standard.
On the drosophila dataset, using VI for learning improves over unstructured methods;
interestingly the RE loss does no better than unstructured learning. Note also that the
relative performance of unstructured SVM and Random Forest is inverted between both
datasets, emphasizing the distinctness of the two problems.

5 Conclusion

This paper addresses the problem of learning a supervised segmentation algorithm with
arbitrary loss functions. A structured support vector machine has been used to learn
weights for correlation clustering on an edge-weighted region adjacency graph.
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Our first contribution is an efficient exhaustive enumeration of segmentations for
small subsets of the training data for loss-augmented prediction. This allows to train
on the same structured loss functions (RE or VI) as are used for evalutation of the
segmentation quality. We find that, for a neighborhood of |Cs| ~ 27 and the linear
struct-SVM classifier, structured learning with a structured loss function can beat more
complex, but unstructured classifiers in two different microscopic modalities, but still
fails to match the quality of a human expert. Our second contribution, a hierarchical
blockwise scheme for structured prediction, enables us to analyze a 10003 dataset in-
volving over 10 million variables, which was broken up initially into 3,000 blocks. The
complete hierarchical blockwise segmentation takes about a day, but can be easily paral-
lelized over the independent subproblems. Fig.[3 right, shows 900 objects from the final
partitioning.
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