Skip to main content

Aminoglycoside Antibiotics

  • Chapter
  • First Online:
Antimicrobials

Abstract

Aminoglycosides were the second major antibiotic class to be discovered from fermentation of microorganisms. They are structurally characterized by an aminocyclitol that is substituted in several different patterns by amino- and/or neutral sugar moieties. They are potent, bactericidal, water-soluble compounds that are given by parenteral administration. They are especially useful for treatment of infections caused by Gram-negative bacteria, including Pseudomonas aeruginosa. Limitations of the class include the development of microbial resistance by a variety of mechanisms and patient toxicity, especially nephrotoxicity and ototoxicity. Several semi-synthetic derivatives have been developed that have improved features, especially increased activity against resistant strains of bacteria. The newest aminoglycoside, plazomicin, is a semi-synthetic derivative of sisomicin that is undergoing further evaluation in clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggen JB et al (2010) Synthesis and spectrum of the neoglycoside ACHN-490. Antimicrob Agents Chemother 54:4636–4642

    Article  PubMed  CAS  Google Scholar 

  • Ali BH, Al Za’abi M, Blunden G, Nemmar A (2011) Experimental gentamicin nephrotoxicity and agents that modify it: a mini-review of recent research. Basic Clin Pharmacol Toxicol 109:225–232

    Article  PubMed  CAS  Google Scholar 

  • Ariano RE, Zelenitsky SA, Kassum DA (2008) Aminoglycoside-induced vestibular injury: maintaining a sense of balance. Ann Pharmacother 42:1282–1289

    Article  PubMed  Google Scholar 

  • Armstrong ES, Miller GH (2010) Combating evolution with intelligent design: the neoglycoside ACHN-490. Curr Opin Microbiol 13:565–573

    Article  PubMed  CAS  Google Scholar 

  • Arya DP (2007) Aminoglycoside antibiotics: from chemical biology to drug discovery. John Wiley & Sons, Hoboken

    Book  Google Scholar 

  • Becker B, Cooper MA (2013) Aminoglycoside antibiotics in the 21st century. ACS Chem Biol 8:105–115

    Article  PubMed  CAS  Google Scholar 

  • Borders DB (2005) Antibiotics, survey. In: Seidel A (ed) Kirk-Othmer Encyclopedia of Chemical Technology, 5th edition. John Wiley & Sons, New York

    Google Scholar 

  • Bracco D et al (2008) Pharmacokinetic variability of extended interval tobramycin in burn patients. Burns 34:791–796

    Article  PubMed  Google Scholar 

  • Brodersen DE, Clemons WM Jr, Carter AP, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V (2000) The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell 103:1143–1154

    Article  PubMed  CAS  Google Scholar 

  • Carter AP, Clemons WM, Brodersen DE, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V (2000) Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407:340–348

    Article  PubMed  CAS  Google Scholar 

  • Chaudhary M, Naidu GK, Kumar S, Payaasi A (2012) Comparative antibacterial activity of a novel semisynthetic antibiotic: etimicin sulphate and other aminoglycosides. World J Microbiol Biotechnol 28:3365–3371

    Article  PubMed  CAS  Google Scholar 

  • Cochran TG, Abraham DJ, Martin LL (1972) Stereochemistry and absolute configuration of the antibiotic spectinomycin: an X-ray diffraction study. J Chem Soc, Chem Commun 1972:494–495

    Article  Google Scholar 

  • Cooper DJ (1971) Comparative chemistry of some aminoglycoside antibiotics. Pure Appl Chem 28:455–467

    Article  PubMed  CAS  Google Scholar 

  • Cundliffe E, Demain AL (2010) Avoidance of suicide in antibiotic-producing microbes. J Ind Microbiol Biotechnol 37:643–672

    Article  PubMed  CAS  Google Scholar 

  • Doi Y, Arakawa Y (2007) 16S ribosomal RNA methylation: emerging resistance mechanism against aminoglycosides. Clin Infect Dis 45:88–94

    Article  PubMed  CAS  Google Scholar 

  • Dozzo P, Moser HE (2010) New aminoglycoside antibiotics. Expert Opin Ther Patents 20:1321–1341

    Article  CAS  Google Scholar 

  • Elanco Animal Health (2013) http://www.elanco.us./product-services

  • El’Garch F, Jeannot K, Hocquet D, Llanes-Barakat C, Plésiat P (2007) Cumulative effects of several nonenzymatic mechanisms on the resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob Agents Chemother 51:1016–1021

    Article  PubMed  Google Scholar 

  • Falagas ME, Karageorgopoulos DE, Georgantzi GG, Sun C, Wang R, Rafailidis PI (2012) Susceptibility of Gram-negative bacteria to isepamicin: a systemic review. Expert Rev Anti-Infect Ther 10:207–218

    Article  PubMed  CAS  Google Scholar 

  • Gilbert DN, Leggett JE (2009) Aminoglycosides. In: Mandell GL, Bennett JE, Dolin R (eds) Mandell, Douglas and Bennett’s Principles and Practice of Infectious Diseases, 7th edn, chapter 26. Churchill Livingstone, New York

    Google Scholar 

  • Girolami RL, Stamm JM (1977) Fortimicins A and B, new aminoglycoside antibiotics. IV. J Antibiot 30:564–570

    Article  PubMed  CAS  Google Scholar 

  • Harvey SC, Li X, Skolnick P, Kirst HA (2000) The antibacterial and NMDA receptor activating properties of aminoglycosides are dissociable. Eur J Pharmacol 387:1–7

    Article  PubMed  CAS  Google Scholar 

  • Hichens M, Rinehart KL Jr (1963) Chemistry of the neomycins. XII. J Am Chem Soc 85:1547–1548

    Article  CAS  Google Scholar 

  • Karasawa T, Steyger PS (2011) Intracellular mechanisms of aminoglycoside-induced cytotoxicity. Integr Biol 3:879–886

    Article  CAS  Google Scholar 

  • Kawaguchi H, Naito T (1983) Amikacin. In: Bindra JS, Lednicer D (eds) Chronicles of drug discovery, vol 2, Chapter 10. Wiley, New York

    Google Scholar 

  • Kawaguchi H, Naito T, Nakagawa S, Fujisawa K (1972) BB-K 8, a new semisynthetic aminoglycoside antibiotic. J Antibiot 25:695–708

    Article  PubMed  CAS  Google Scholar 

  • Kirst HA, Allen NE (2007) Aminoglycoside antibiotics. In: Triggle DJ, Taylor JB (eds) Comprehensive medicinal chemistry II, vol 7. Elsevier, Oxford

    Google Scholar 

  • Koch KF, Rhoades JA, Hagaman EW, Wenkert E (1974) Carbon-13 nuclear magnetic resonance spectral analysis of tobramycin and related antibiotics. J Am Chem Soc 96:3300–3305

    Article  PubMed  CAS  Google Scholar 

  • Kondo S, Iinuma K, Yamamoto H, Maeda K, Umezawa H (1973) Syntheses of 1-n-(S)-4-amino-2-hydroxybutyryl)-kanamycin B and-3′,4′-dideoxykanamycin B active against kanamycin-resistant bacteria. J Antibiot 26:412–415

    Article  PubMed  CAS  Google Scholar 

  • Kotretsou S, Mingeot-Leclercq MP, Constantinou-Kokotou V et al (1995) Synthesis and antimicrobial and toxicological studies of amino acid and peptide derivatives of kanamycin A and netilmicin. J Med Chem 38:4710–4719

    Article  PubMed  CAS  Google Scholar 

  • Kudo F, Eguchi T (2009) Biosynthetic enzymes for the aminolgycosides butirosin and neomycin. Methods Enzymol 459:493–519

    Article  PubMed  CAS  Google Scholar 

  • Li C-R, Yang X-Y, Lou R-H et al (2008) In vitro antibacterial activity of vertilmicin and its susceptibility to modifications by the recombinant AAC(6′)-APH(2′) enzyme. Antimicrob Agents Chemother 52:3875–3882

    Article  PubMed  CAS  Google Scholar 

  • Lo JY, Ho KM, Lo AC (2012) Surveillance of gonococcal antimicrobial susceptibility resulting in early detection of emerging resistance. J Antimicrob Chemother 67:1422–1426

    Article  PubMed  CAS  Google Scholar 

  • Magnet S, Blanchard JS (2005) Molecular insights into aminoglycoside action and resistance. Chem Rev 105:477–497

    Article  PubMed  CAS  Google Scholar 

  • Marchand I, Damier-Piolle L, Courvalin P, Lambert T (2004) Expression of the RND-type efflux pump AdeABC in Acinetobacter baumannii is regulated by the AdeRS two-component system. Antimicrob Agents Chemother 48:3298–3304

    Article  PubMed  CAS  Google Scholar 

  • Matt T, Ng CL, Lang K et al (2012) Dissociation of antibacterial activity and aminoglycoside ototoxicity in the 4-monosubstituted 2-deoxystreptamine apramycin. Proc Nat Acad Sci US 109:10984–10989

    Article  CAS  Google Scholar 

  • McCormick C et al (2008) Effectiveness of a new tobramycin (0.3%) and dexamethasone (0.05%) formulation in the treatment of experimental Pseudomonas keratitis. Curr Med Res Opin 24:1569–1575

    Article  PubMed  CAS  Google Scholar 

  • Mitscher LA (2010) Tetracycline, aminoglycoside, macrolide, and miscellaneous antibiotics. In: Abraham DJ, Rotella DP (eds) Burger’s medicinal chemistry, drug discovery, and development, 7th edn. Wiley, New York

    Google Scholar 

  • Mortensen JE, Nanavaty J, Veenhuizen MF, Shryock TR (1996) Reviewing apramycin’s properties and use in controlling colibacillosis in pigs. Vet Med 91:473–477

    Google Scholar 

  • Nagabhushan TL, Cooper AB, Tsai H, Daniels PJL, Miller GH (1978) The syntheses and biological properties of 1-N-(S-4-amino-2-hydroxybutyryl)-gentamicin B and 1-N-(S-3-amino-2-hydroxypropionyl)-gentamicin B. J Antibiot 31:681–687

    Article  PubMed  CAS  Google Scholar 

  • Neidle S, Rogers D, Hursthouse MB (1968) The crystal and molecular structure of streptomycin oximeselenate. Tetrahedron Lett 9:4725–4728

    Article  Google Scholar 

  • Neuss N, Koch KF, Molloy BB, Day W, Huckstep LL, Dorman DE, Roberts JD (1970) Structure of hygromycin B. Helv Chim Acta 53:2314–2319

    Article  PubMed  CAS  Google Scholar 

  • O’Connor S, Lam LKT, Jones ND, Chaney MO (1976) Apramycin, a unique aminocyclitol antibiotic. J Org Chem 41:2087–2092

    Article  PubMed  Google Scholar 

  • Ohnishi Y, Kameyama S, Onaka H, Horinouchi S (1999) The A-factor regulatory cascade leading to streptomycin biosynthesis in Streptomyces griseus: identification of a target gene of the A-factor receptor. Mol Microbiol 34:102–111

    Article  PubMed  CAS  Google Scholar 

  • Pagkalis S, Mantadakis E, Mavros MN, Ammari C, Falagas ME (2011) Pharmacological considerations for the proper use of aminoglycosides. Drugs 71:2277–2294

    Article  PubMed  CAS  Google Scholar 

  • Park JW, Park SR, Nepal KK, Han AR, Ban YH, Yoo YJ, Kim EJ, Kim EM, Kim D, Sohng JK, Yoon YJ (2011) Discovery of parallel pathways of kanamycin biosynthesis allows antibiotic manipulation. Nat Chem Biol 7:843–852

    Article  PubMed  CAS  Google Scholar 

  • Park SR, Park JW, Ban YH, Sohng JK, Yoon YJ (2013) 2-Deoxystreptamine-containing aminoglycoside antibiotics: recent advances in the characterization and manipulation of their biosynthetic pathways. Nat Prod Rep 30:11–20

    Article  PubMed  CAS  Google Scholar 

  • Pasquale TR, Tam JS (2005) Non antimicrobial effects of antibacterial agents. Clin Infect Dis 40:127–135

    Article  PubMed  CAS  Google Scholar 

  • Penha FM, Rodrigues EB, Maia M et al (2010) Retinal and ocular toxicity in ocular application of drugs and chemicals–part II. Ophthalmic Res 44:205–224

    Article  PubMed  CAS  Google Scholar 

  • Piepersberg W (1997) Molecular biology, biochemistry and fermentation of aminoglycoside antibiotics. In: Strohl WR (ed) Biotechnology of antibiotics, 2nd edn, Marcel Dekker Inc., New York

    Google Scholar 

  • Poole K (2005) Aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 49:479–487

    Article  PubMed  CAS  Google Scholar 

  • Prayle A, Smyth AR (2010) Aminoglycoside use in cystic fibrosis: therapeutic strategies and toxicity. Curr Opin Pulm Med 16:604–610

    Article  PubMed  CAS  Google Scholar 

  • Price KE, Godfrey JC, Kawaguchi H (1977) Effect of structural modifications on the biological properties of aminoglycoside antibiotics containing 2-deoxystreptamine and supplement. In: Perlman D (ed) Structure-activity relationships among the semisynthetic antibiotics. Academic Press, New York

    Google Scholar 

  • Quiros Y et al (2011) An integrative overview on the mechanisms underlying the renal tubular cytotoxicity of gentamicin. Toxicol Sci 119:245–256

    Google Scholar 

  • Reimann H, Cooper DJ, Mallams AK et al (1974) The structure of sisomicin, a novel unsaturated aminocyclitol antibiotic from Micromonospora inyoensis. J Org Chem 39:1451–1457

    Article  PubMed  CAS  Google Scholar 

  • Schatz A, Bugie E, Waksman SA (1944) Streptomycin, a substance exhibiting antibiotic activity against Gram-positive and Gram-negative bacteria. Proc Soc Exp Biol Med 55:66–69

    Article  CAS  Google Scholar 

  • Selimoglu E (2007) Aminoglycoside-induced ototoxicity. Curr Pharm Design 13:119–126

    Article  CAS  Google Scholar 

  • Singh MP (2001) Tobramycin. Curr Opin Investig Drugs 2:755–765

    PubMed  CAS  Google Scholar 

  • Tsai A, Uemura S, Johansson M, Puglisi EV, Marshall RA, Aitken CE, Korlach J, Ehrenberg M, Puglisi JD (2013) The impact of aminoglycosides on the dynamics of translation elongation. Cell Rep. 3:497–508

    Article  PubMed  CAS  Google Scholar 

  • Tenover FC, Elvrum PM (1988) Detection of two different kanamycin resistance genes in naturally occurring isolates of Campylobacter jejuni and Campylobacter coli. Antimicrob Agents Chemother 32:1170–1173

    Article  PubMed  CAS  Google Scholar 

  • Tenover FC, Tickler I, Armstrong ES, Kubo A, Lopez S, Persing DH, Miller GH (2011) Activity of ACHN-490 against methicillin-resistant Staphylococcus aureus (MRSA) isolates from patients in US hospitals. Int J Antimicrob Agents 38:352–354

    Article  PubMed  CAS  Google Scholar 

  • Umezawa H, Ueda M et al (1957) Production and isolation of a new antibiotic: kanamycin. J Antibiot 10:181–188

    PubMed  CAS  Google Scholar 

  • Umezawa H, Umezawa S, Tsuchiya T, Okazaki Y (1971) 3′,4′-dideoxy-kanamycin B active against kanamycin-resistant Escherichia coli and Pseudomonas aeruginosa. J Antibiot 24:485–487

    Article  PubMed  CAS  Google Scholar 

  • Waksman SA (1953) Streptomycin: background, isolation, properties, and utilization. Science 118:259–266

    Article  PubMed  CAS  Google Scholar 

  • Waksman SA, Lechevalier HA (1949) Neomycin, a new antibiotic active against streptomycin-resistant bacteria, including tuberculosis organisms. Science 109:305–307

    Article  PubMed  CAS  Google Scholar 

  • Walsh C (2000) Antibiotics. Actions, origins, resistance. ASM Press, Washington, DC

    Google Scholar 

  • Warchol ME (2010) Cellular mechanisms of aminoglycoside ototoxicity. Curr Opin Otolaryngol Head Neck Surg 18:454–458

    Article  PubMed  Google Scholar 

  • Wehmeier UF, Piepersberg W (2009) Enzymology of aminoglycosides biosynthesis-deduction from gene clusters. Methods Enzymol 459:459–491

    Article  PubMed  CAS  Google Scholar 

  • Woo PWK, Dion HW, Bartz QR (1971) Butirosins A and B, aminoglycoside antibiotics. III. Structures. Tetrahedron Lett 12:2625–2628

    Article  Google Scholar 

  • Wright JJ (1976) Synthesis of 1-N-ethylsisomicin: a broad-spectrum semisynthetic aminoglycoside antibiotic. J Chem Soc, Chem Commun 1976:206–208

    Article  Google Scholar 

  • Wright GD (1999) Aminoglycoside-modifying enzymes. Curr Opin Microbiol 2:499–503

    Article  PubMed  CAS  Google Scholar 

  • Yonath A (2005) Antibiotics targeting ribosomes: resistance, selectivity, synergism and cellular regulation. Annu Rev Biochem 74:649–679

    Article  PubMed  CAS  Google Scholar 

  • Xie J, Talaska AE, Schacht J (2011) New developments in aminoglycoside therapy and ototoxicity. Hearing Res 281:28–37

    Article  CAS  Google Scholar 

  • Zhanel GG, Lawson CD, Zelenitsky S (2012) Comparison of the next-generation aminoglycoside plazomicin to gentamicin, tobramycin and amikacin. Expert Rev Anti-Infect Ther 10:459–473

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert A. Kirst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kirst, H.A., Marinelli, F. (2014). Aminoglycoside Antibiotics. In: Marinelli, F., Genilloud, O. (eds) Antimicrobials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39968-8_10

Download citation

Publish with us

Policies and ethics