Skip to main content

Part of the book series: Lecture Notes in Applied Mathematics and Mechanics ((LAMM,volume 1))

Abstract

Human walking is an interdisciplinary research topic. It started in the Ancient World with early observations and questions in philosophy, it was treated in the Middle Ages with experiments and data collection by physiologists, and in the 20th century models were designed, equations of motion were generated and simulations by multibody dynamics approaches were performed. More recently parameter optimization was used to overcome the problem of muscle overactuation and inverse dynamics methods were introduced. In the first part of the paper the early developments and mechanism models are described while in the second part parameter optimization is applied as an example of recent research results on gait disorder simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schiehlen, W.: PAMM Proc. Appl. Math. Mech. 11, 903–906 (2011)

    Google Scholar 

  2. Nussbaum, M.C.: Aristotle’s de motu animalium. Princeton University Press, Princeton (1978)

    Google Scholar 

  3. Borelli, G.A.: De motu animalium. Bernabo, Rome (1680)

    Google Scholar 

  4. Borelli, J.A.: De motu animalium. Boutesteyn, Leiden (1685)

    Google Scholar 

  5. Borelli, J.A.: De motu animalium. Petrum Gosse, The Hague (1743)

    Google Scholar 

  6. Borelli, G.A.: De motu animalium. Kessinger, Whitefish (2009)

    Google Scholar 

  7. Borelli, G.A.: Die Bewegung der Tiere. Akad Verlagsges, Leipzig (German transl. Mengeringhausen, M.) (1927)

    Google Scholar 

  8. Borelli, G.A.: On the Movement of Animals. Springer, Berlin (English transl. Maquet, P.) (1989)

    Google Scholar 

  9. Barthez, P.J.: Neue Mechanik der willkuerlichen Bewegungen des Menschen und der Thiere. Kuemmel, Halle (German transl. Sprengel, K.) (1800)

    Google Scholar 

  10. Weber, W., Weber, E.: Mechanik der menschlichen Gehwerkzeuge. Dieterich, Goettingen (1836)

    Google Scholar 

  11. Weber, W., Weber, E.: Mechanics of the Human Walking Apparatus. Springer, Berlin (English transl. Maquet, P., Furlong, R.) (1992)

    Google Scholar 

  12. Vierordt, H.: Ueber das Gehen des Menschen in gesunden und kranken Zustaenden. Laupp, Tuebingen (1881)

    Google Scholar 

  13. Fischer, O.: Theoretische Grundlagen fuer eine Mechanik der lebenden Koerper. Teubner, Leipzig (1906)

    Google Scholar 

  14. Wittenburg, J.: Dynamics of multibody systems. Springer, Berlin (2008)

    Google Scholar 

  15. Beletsky, V.V.: Two leg walking – The model problems of dynamics and control. Nauka, Moscow (1984)

    Google Scholar 

  16. Silva, M.P.T., Ambrosio, J.A.C.: Kinematic data consistency in the inverse dynamic analysis of biomechanical system. Multibody System Dynamics 8, 219–239 (2002)

    Article  MATH  Google Scholar 

  17. Chenut, X., Fisette, P., Samin, J.C.: Recursive formalism with a minimal dynamic parametrization for the identification and simulation of multibody systems – application to the human body. Multibody System Dynamics 8, 117–140 (2002)

    Article  MATH  Google Scholar 

  18. AnyBody Technology: Press. AnyBody Modeling SystemTM (2013), http://www.anybodytech.com (accessed January 25, 2013)

  19. Zajac, F.E., Neptune, R.R., Kautz, S.A.: Biomechanics and muscle coordination of human walking, Part I. Gait Posture 16, 215–232 (2002)

    Article  Google Scholar 

  20. Zajac, F.E., Neptune, R.R., Kautz, S.A.: Biomechanics and muscle coordination of human walking, Part II. Gait Posture 17, 1–17 (2003)

    Article  Google Scholar 

  21. Anderson, F.C., Pandy, M.G.: A dynamic optimization solution for vertical jumping in three dimensions. Computer Meth. Biomechanics Biomedical Engineering 2, 201–231 (1999)

    Article  Google Scholar 

  22. Anderson, F.C., Pandy, M.G.: Dynamic optimization of human walking. J. Biomechanical Eng. 123, 381–390 (2001)

    Article  Google Scholar 

  23. Thelen, D.G., Anderson, F.C., Delp, S.L.: Generating dynamic simulations of movement using computed muscle control. J. Biomechanics 36, 321–328 (2003)

    Article  Google Scholar 

  24. Thelen, D.G., Anderson, F.C.: Using computed muscle control to generate forward dynamic simulations of human walking from experimental data. J. Biomechanics 39, 1107–1115 (2006)

    Article  Google Scholar 

  25. Seth, A., Pandy, M.G.: A neuromusculoskeletal tracking method for estimating individual muscle forces in human movement. J. Biomechanics 40, 356–366 (2007)

    Article  Google Scholar 

  26. De Sapio, V., Khatib, O., Delp, S.: Least action principles and their application to constrained and task-level problems in robotics and biomechanics. Multibody System Dynamics 19, 303–322 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rasmussen, J., Damsgaard, M., Voigt, M.: Muscle recruitment by the min/max crierion. J. Biomechanics 34, 409–415 (2001)

    Article  Google Scholar 

  28. Garcia-Vallejo, D., Schiehlen, W.: 3D-Simulation of human walking by parameter optimization. Arch. Appl. Mech. 82, 533–556 (2012)

    Article  Google Scholar 

  29. Kurz, T., Eberhard, P., Henninger, C., Schiehlen, W.: From Neweul to Neweul-M2: symbolical equations of motion for multibody system analysis and synthesis. Multibody System Dynamics 24, 25–41 (2010)

    Article  MATH  Google Scholar 

  30. Umberger, B., Gerritsen, K., Martin, P.: A model of human muscle energy expendidure. Computer Meth. Biomechanics Biomedical Eng. 6, 99–111 (2003)

    Article  Google Scholar 

  31. Ackermann, M.: Dynamics and energetics of walking with prostheses. Shaker, Aachen (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schiehlen, W. (2014). On the Historical Development of Human Walking Dynamics. In: Stein, E. (eds) The History of Theoretical, Material and Computational Mechanics - Mathematics Meets Mechanics and Engineering. Lecture Notes in Applied Mathematics and Mechanics, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39905-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39905-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39904-6

  • Online ISBN: 978-3-642-39905-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics