Skip to main content

A Machine-Checked Proof of the Odd Order Theorem

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7998))

Abstract

This paper reports on a six-year collaborative effort that culminated in a complete formalization of a proof of the Feit-Thompson Odd Order Theorem in the Coq proof assistant. The formalized proof is constructive, and relies on nothing but the axioms and rules of the foundational framework implemented by Coq. To support the formalization, we developed a comprehensive set of reusable libraries of formalized mathematics, including results in finite group theory, linear algebra, Galois theory, and the theories of the real and complex algebraic numbers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Appel, K., Haken, W.: Every map is four colourable. Bulletin of the American Mathematial Society 82, 711–712 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. Armand, M., Faure, G., Grégoire, B., Keller, C., Théry, L., Werner, B.: A Modular Integration of SAT/SMT Solvers to Coq through Proof Witnesses. In: Jouannaud, J.-P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 135–150. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Aschbacher, M.: Finite Group Theory. Cambridge Studies in Advanced Mathematics. Cambridge University Press (2000)

    Google Scholar 

  4. Avigad, J.: Type inference in mathematics. Bulletin of the European Association for Theoretical Computer Science, EATCS (106), 78–98 (2012)

    Google Scholar 

  5. Avigad, J., Harrison, J.: Formally verified mathematics. To appear in the Communications of the ACM

    Google Scholar 

  6. Bender, H., Glauberman, G.: Local analysis for the Odd Order Theorem. Number 188 in London Mathematical Society, LNS. Cambridge University Press (1994)

    Google Scholar 

  7. Bertot, Y., Castéran, P.: Interactive theorem proving and program development: Coq’Art: The calculus of inductive constructions. Springer, Berlin (2004)

    Book  Google Scholar 

  8. Bertot, Y., Gonthier, G., Ould Biha, S., Pasca, I.: Canonical big operators. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 86–101. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Cohen, C.: Construction of real algebraic numbers in coq. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 67–82. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Cohen, C., Mahboubi, A.: A formal quantifier elimination for algebraically closed fields. In: Autexier, S., Calmet, J., Delahaye, D., Ion, P.D.F., Rideau, L., Rioboo, R., Sexton, A.P. (eds.) AISC 2010. LNCS, vol. 6167, pp. 189–203. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Coquand, T., Huet, G.: The calculus of constructions. Information and Computation 76(2-3), 95–120 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Coquand, T., Paulin-Mohring, C.: Inductively defined types. In: Martin-Löf, P., Mints, G. (eds.) COLOG 1988. LNCS, vol. 417, pp. 50–66. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  13. Derksen, H.: The fundamental theorem of algebra and linear algebra. American Mathematical Monthly 100(7), 620–623 (2003)

    Article  MathSciNet  Google Scholar 

  14. Feit, W., Thompson, J.G.: Solvability of groups of odd order. Pacific Journal of Mathematics 13(3), 775–1029 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  15. Garillot, F., Gonthier, G., Mahboubi, A., Rideau, L.: Packaging mathematical structures. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 327–342. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Gonthier, G.: Formal proof—the Four Color Theorem. Notices of the AMS 55(11), 1382–1393 (2008)

    MathSciNet  MATH  Google Scholar 

  17. Gonthier, G.: Point-free, set-free concrete linear algebra. In: van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 103–118. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  18. Gonthier, G., Mahboubi, A.: An introduction to small scale reflection in Coq. Journal of Formalized Reasoning 3(2), 95–152 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Gonthier, G., Mahboubi, A., Rideau, L., Tassi, E., Théry, L.: A Modular Formalisation of Finite Group Theory. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 86–101. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  20. Gonthier, G., Mahboubi, A., Tassi, E.: A Small Scale Reflection Extension for the Coq system. Rapport de recherche RR-6455, INRIA (2012)

    Google Scholar 

  21. Gonthier, G., Ziliani, B., Nanevski, A., Dreyer, D.: How to make ad hoc proof automation less ad hoc. In: ICFP, pp. 163–175 (2011)

    Google Scholar 

  22. Gorenstein, D.: Finite Groups. AMS Chelsea Publishing Series (2007)

    Google Scholar 

  23. Hales, T.: Formal proof. Notices of the AMS 55(11), 1370–1380 (2008)

    MathSciNet  MATH  Google Scholar 

  24. Harrison, J.: Without Loss of Generality. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 43–59. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  25. Hedberg, M.: A coherence theorem for Martin-Löf’s type theory. Journal of Functional Programming 8(4), 413–436 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hinze, R.: Fun with phantom types. In: Gibbons, J., de Moor, O. (eds.) The Fun of Programming, Cornerstones of Computing, pp. 245–262 (2003)

    Google Scholar 

  27. Huppert, B., Blackburn, N.: Finite Groups II. Grundlehren Der Mathematischen Wissenschaften. Springer London, Limited (1982)

    Google Scholar 

  28. Isaacs, I.: Character Theory of Finite Groups. AMS Chelsea Pub. Series (1976)

    Google Scholar 

  29. Klein, G., et al.: sel4: Formal verification of an os kernel. In: SOPS ACM SIGOPS, pp. 207–220 (2009)

    Google Scholar 

  30. Konrad, K.: Separability II, http://www.math.uconn.edu/~kconrad/blurbs/galoistheory/separable2.pdf

  31. Kurzweil, H., Stellmacher, B.: The Theory of Finite Groups: An Introduction. Universitext Series. Springer (2010)

    Google Scholar 

  32. Leroy, X.: Formal certification of a compiler back-end, or: programming a compiler with a proof assistant. In: POPL, pp. 42–54. ACM Press (2006)

    Google Scholar 

  33. Mines, R., Richman, F., Ruitenburg, W.: A course in constructive algebra. Universitext (1979). Springer (1988)

    Google Scholar 

  34. Neumann, P.M., Mann, A.J.S., Tompson, J.C.: The collected papers of William Burnside, vol. I. Oxford University Press (2004)

    Google Scholar 

  35. O’Connor, R.: Classical mathematics for a constructive world. Mathematical Structures in Computer Science 21, 861–882 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Peterfalvi, T.: Character Theory for the Odd Order Theorem. London Mathematical Society, LNS, vol. 272. Cambridge University Press (2000)

    Google Scholar 

  37. Rotman, J.: Galois Theory. Universitext (1979). Springer (1998)

    Google Scholar 

  38. Tarski, A.: A Decision Method for Elementary Algebra and Geometry (1948); 2nd edn. University of California Press, Berkeley (1951)

    Google Scholar 

  39. The Mathematical Component Team. A Formalization of the Odd Order Theorem using the Coq proof assistant (September 2012), http://www.msr-inria.inria.fr/Projects/math-components/feit-thompson

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gonthier, G. et al. (2013). A Machine-Checked Proof of the Odd Order Theorem. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds) Interactive Theorem Proving. ITP 2013. Lecture Notes in Computer Science, vol 7998. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39634-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39634-2_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39633-5

  • Online ISBN: 978-3-642-39634-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics