Skip to main content

Host Reaction to Attack by Root Parasitic Plants

  • Chapter
  • First Online:
Parasitic Orobanchaceae

Abstract

While a large majority of plants succumb to attack by parasitic plants, not all efforts to invade potential host plant roots are successful, as some hosts and non-hosts have both general and specific defence mechanisms that block parasite development in the cortex, at the endodermis, and before or after connection to the vascular system. This chapter describes the relevant aspects of host and non-host reactions to attempted parasite invasion, focusing on the histological characteristics of the resistance response, the underlying genetic basis for resistance and the cellular signalling and gene expression changes that regulate and are coincident with the resistance responses. Where applicable, the interaction of parasitic plants with their hosts/non-hosts is compared and contrasted with other known plant–plant pathogen associations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramovitch RB, Anderson JC, Martin GB (2006) Bacterial elicitation and evasion of plant innate immunity. Nat Rev Mol Cell Biol 7:601–611

    PubMed  CAS  Google Scholar 

  • Aggarwal VD, Muleba N, Drabo I, Souma J, Mbewe M (1984) Inheritance of Striga gesnerioides resistance in cowpea. In: Parker C, Musselman LJ, Polhill RM, Wilson AK (eds) Proceedings of the 3rd international symposium on parasitic weeds. ICARDA-IPSPRG, Aleppo, pp 143–147

    Google Scholar 

  • Aggarwal VD, Haley SD, Broockman FE (1986) Present status of breeding cowpea for resistance to Striga at IITA. In: ter Borg SJ (ed) Proceeding of a workshop on biology and control of Orobanche. LH/VPO, Wageningen, pp 176–180

    Google Scholar 

  • Akhtouch B, Muñoz-Ruz J, Melero-Vara JM, Fernández-Martínez JM, Domínguez J (2002) Inheritance of resistance to race F of broomrape (Orobanche cumana Wallr.) in sunflower lines of different origin. Plant Breed 121:266–269

    Google Scholar 

  • Alonso LC, Fernández-Escobar J, López G, Rodríguez-Ojeda M, Sallago F (1996) New highly virulent sunflower broomrape (Orobanche cernua Loefl.) pathotypes in Spain. In: Moreno MT, Cubero JI, Berner D, Joel D, Musselman LJ, Parker C (eds) Advances in parasitic plant research. Proceedings of the 6th international symposium on parasitic weeds. Dirección General de Investigación Agraria, Consejería de Agricultura y Pesca, Sevilla, Spain, pp 639–644

    Google Scholar 

  • Amusan IO, Rich PJ, Menkir A, Housley T, Ejeta G (2008) Resistance to Striga hermonthica in a maize inbred line derived from Zea diploperennis. New Phytol 178:157–166

    PubMed  Google Scholar 

  • Atokple IDK, Singh BB, Emechebe AM (1995) Genetics of resistance to Striga and Alectra in cowpea. J Hered 86:45–49

    Google Scholar 

  • Ben-Hod G, Losner D, Joel DM, Mayer M (1993) Pectin methylesterase in calli and germinating seeds of Orobanche aegyptiaca. Phytochemistry 32:1399–1402

    CAS  Google Scholar 

  • Bent AF, Mackey D (2007) Elicitors, effectors, and R genes: the new paradigm and a lifetime supply of questions. Annu Rev Phytopathol 45:399–436

    PubMed  CAS  Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

    PubMed  CAS  Google Scholar 

  • Boller T, He S-Y (2009) Innate immunity in plants: an arms race between pattern recognition receptors and effectors in microbial pathogens. Science 324:742–744

    PubMed  CAS  Google Scholar 

  • Botanga CJ, Timko MP (2005) Genetic structure and analysis of host and nonhost interactions of Striga gesnerioides (Witchweed) from Central Florida. Phytopathology 95:1166–1173

    PubMed  CAS  Google Scholar 

  • Botanga CJ, Timko MP (2006) Phenetic relationships among different races of Striga gesnerioides (Willd.) Vatke from West Africa. Genome 49:1351–1365

    PubMed  Google Scholar 

  • Cameron DD, Seel WE (2007) Functional anatomy of haustoria formed by Rhinanthus minor: linking evidence from histology and isotope tracing. New Phytol 174:412–419

    PubMed  CAS  Google Scholar 

  • Cameron DC, Coats AM, Seel WE (2006) Differential resistance among host and non-host species underlies the variable success of the hemiparasitic plant Rhinanthus minor. Ann Bot 98:1289–1299

    PubMed  Google Scholar 

  • Caplan J, Padmanabhan M, Dinesh-Kumar SP (2008) Plant NB-LRR immune receptors: from recognition to transcriptional reprogramming. Cell Host Microbe 3:126–135

    PubMed  CAS  Google Scholar 

  • Castillejo MA, Amiour N, Dumas-Gaudot E, Rubiales D, Jorrín JV (2004) A proteome approach to studying plant response to crenate broomrape (Orobanche crenata) in pea (Pisum sativum). Phytochemistry 65:1817–1828

    Google Scholar 

  • Castillejo MA, Maldonado AM, Dumas-Gaudot E, Fernández-Aparicio M, Susin R, Rubiales D, Jorrín J (2009) Differential expression proteomics to investigate responses and resistance to Orobanche crenata in Medicago truncatula. BMC Genomics 10:294

    PubMed  Google Scholar 

  • Cubero JI, Moreno MT (1999) Studies on resistance to Orobanche crenata in Vicia faba. In: Cubero JI, Moreno MT, Rubiales D, Sillero J (eds) Resistance to Orobanche: the state of the art. Junta de Andalucía, Consejería de Agricultura y Pesca, Seville, Spain, pp 9–15

    Google Scholar 

  • de Zélicourt A, Letousey P, Thoiron S, Campion C, Simoneau P, Elmorjani K, Marion D, Simier P, Delavault P (2007) Ha-DEF1, a sunflower defensin, induces cell death in Orobanche parasitic plants. Planta 226:591–600

    PubMed  Google Scholar 

  • Díaz R, Šatović Z, Román B, Rubiales D, Cubero JI,Torres AM (2005) QTL analysis of broomrape resistance in faba bean (Vicia faba L.). In: Kovacevic V, Jovanovac S (eds) Proceedings of the 40th Croatian symposium on agriculture. Faculty of Agriculture, Zagreb, Croatia, pp 181–182

    Google Scholar 

  • Diaz-Ruiz R, Torres AM, Šatović Z, Gutierrez MV, Cubero JI, Román B (2010) Validation of QTLs for Orobanche crenata resistance in faba bean (Vicia faba L.) across environments and generations. Theor Appl Genet 120:909–919

    PubMed  Google Scholar 

  • Die JV, Dita MA, Krajinski F, Gonzalez-Verdejo CI, Rubiales D, Moreno MT, Román B (2007) Identification by suppression subtractive hybridization and expression analysis of Medicago truncatula putative defence genes in response to Orobanche crenata parasitization. Physiol Mol Plant Pathol 70:49–59

    CAS  Google Scholar 

  • Dörr I, Staack A, Kollmann R (1994) Resistance of Helianthus annuus to Orobanche – histological and cytological studies. In: Pieterse AH, Verkleij JAC, ter Borg SJ (eds) Biology and management of Orobanche. Proceedings of 3rd international workshop on Orobanche and related Striga research. Royal Tropical Institute, Amsterdam, pp 276–289

    Google Scholar 

  • Echevarría-Zomeño S, Pérez-de-Luque A, Jorrín J, Maldonado AM (2006) Pre-haustorial resistance to broomrape (Orobanche cumana) in sunflower (Helianthus annuus): cytochemical studies. J Exp Bot 57:4189–4200

    PubMed  Google Scholar 

  • Ejeta G (2007) Breeding for Striga resistance in sorghum: exploitation of an intricate host–parasite biology. Crop Sci 47:S216–S227

    Google Scholar 

  • Ellis J, Lawrence G, Ayliffe M, Anderson P, Collins N, Finnegan J, Frost D, Luck J, Pryor T (1997) Advances in the molecular genetic analysis of the flax–flax rust interaction. Annu Rev Phytopathol 35:271–291

    PubMed  CAS  Google Scholar 

  • Ellis JG, Dodds PN, Lawrence GJ (2007a) Flax rust resistance gene specificity is based on direct resistance-avirulence protein interactions. Annu Rev Phytopathol 45:289–306

    PubMed  CAS  Google Scholar 

  • Ellis JG, Lawrence GJ, Dodds PN (2007b) Further analysis of gene-for-gene disease resistance specificity in flax. Mol Plant Pathol 8:103–109

    PubMed  CAS  Google Scholar 

  • Eyal Y, Fluhr R (1991) Cellular and molecular biology of pathogenesis related proteins. Oxf Surv Plant Mol Cell Biol 7:223–254

    CAS  Google Scholar 

  • Fernández-Aparicio M, Rubiales D (2010) Characterisation of resistance to crenate broomrape (Orobanche crenata Forsk.) in Lathyrus cicera L. Euphytica 173:77–84

    Google Scholar 

  • Fernández-Aparicio M, Pérez-de-Luque A, Prats E, Rubiales D (2008) Variability of interactions between barrel medic (Medicago truncatula) genotypes and Orobanche species. Ann Appl Biol 153:117–126

    Google Scholar 

  • Fernández-Aparicio M, Sillero JC, Rubiales D (2009) Resistance to broomrape species (Orobanche spp.) in common vetch (Vicia sativa L.). Crop Prot 28:7–12

    Google Scholar 

  • Fernández-Martínez JM, Domínguez J, Pérez-Vich B, Velasco L (2009) Current research strategies for sunflower broomrape control in Spain. Helia 32:47–55

    Google Scholar 

  • Flor HH (1971) Current status of the gene-for-gene concept. Annu Rev Phytopathol 9:275–296

    Google Scholar 

  • Fondevilla S, Fernández-Aparicio M, Šatović Z, Emeran AA, Torres M, Moreno MT, Rubiales D (2010) Identification of quantitative trait loci for specific mechanisms of resistance to Orobanche crenata in pea. Mol Breed 25:259–272

    CAS  Google Scholar 

  • Gil J, Martín LM, Cubero JI (1987) Genetic of resistance in Vicia sativa L. to Orobanche crenata Forks. Plant Breed 99:134–143

    Google Scholar 

  • Göhre V, Robatzek S (2008) Breaking the barriers: microbial effector molecules subvert plant immunity. Annu Rev Phytopathol 46:189–215

    PubMed  Google Scholar 

  • Goldwasser Y, Kleifeld Y, Plakhine D, Rubin D (1997) Variation in vetch (Vicia spp.) response to Orobanche aegyptiaca. Weed Sci 45:756–762

    CAS  Google Scholar 

  • Goldwasser Y, Hershenhorn J, Plakhine D, Kleifeld Y, Rubin B (1999) Biochemical factors involved in vetch resistance to Orobanche aegyptiaca. Physiol Mol Plant Pathol 54:87–96

    CAS  Google Scholar 

  • Goldwasser Y, Plakhine D, Kleifeld Y, Zamski E, Rubin B (2000) The differential susceptibility of vetch (Vicia spp.) to Orobanche aegyptiaca: anatomical studies. Ann Bot 85:257–262

    Google Scholar 

  • Gowda BS, Riopel JL, Timko MP (1999) NRS1: a resistance gene homolog expressed in roots of nonhost plants following parasitism by Striga asiatica (witchweed). Plant J 20:217–230

    PubMed  CAS  Google Scholar 

  • Greenshields DL, Jones JDG (2008) Plant pathogen effectors: getting mixed messages. Curr Biol 18:R128–R130

    PubMed  CAS  Google Scholar 

  • Grenier C, Ibrahim Y, Haussmann BIG, Kiambi D, Ejeta G (2007) Marker-assisted selection for Striga resistance in sorghum. In: Ejeta G, Gressell J (eds) Integrating new technologies for Striga control: towards ending the witch-hunt. World Scientific, Singapore, pp 159–172

    Google Scholar 

  • Griffitts AA, Cramer CL, Westwood JH (2004) Host gene expression in response to Egyptian broomrape (Orobanche aegyptiaca). Weed Sci 52:697–703

    CAS  Google Scholar 

  • Gurney AL, Grimanelli D, Kanampiu F, Hoisington D, Scholes JD, Press MC (2003) Novel sources of resistance to Striga hermonthica in Tripsacum dactyloides, a wild relative of maize. New Phytol 160:557–568

    Google Scholar 

  • Gurney AL, Slate J, Press MC, Scholes JD (2006) A novel form of resistance in rice to the angiosperm parasite Striga hermonthica. New Phytol 169:199–208

    PubMed  CAS  Google Scholar 

  • Haussmann BIG, Hess DE, Omanya O, Reddy BVS, Welz HG, Geiger HH (2001) Major and minor genes for stimulation of Striga hermonthica seed germination in sorghum, and interaction with different populations. Crop Sci 41:1507–1512

    Google Scholar 

  • Haussmann BIG, Hess DE, Omanya GO, Folkertsma RT, Reddy BVS, Kayentao M, Welz HG, Geiger HH (2004) Genomic regions influencing resistance to the parasitic weed Striga hermonthica in two recombinant inbred populations of sorghum. Theor Appl Genet 109:1005–1016

    PubMed  CAS  Google Scholar 

  • Hearne SJ (2009) Control – the Striga conundrum. Pest Manag Sci 65:603–614

    PubMed  CAS  Google Scholar 

  • Hiraoka Y, Sugimoto Y (2008) Molecular responses of sorghum to purple witchweed (Striga hermonthica) parasitism. Weed Sci 56:356–363

    CAS  Google Scholar 

  • Hiraoka Y, Ueda H, Sugimoto Y (2009) Molecular responses of Lotus japonicus to parasitism by the compatible species Orobanche aegyptiaca and the incompatible species Striga hermonthica. J Exp Bot 60:641–650

    PubMed  CAS  Google Scholar 

  • Hood ME, Condon JM, Timko MP, Riopel JL (1998) Primary haustorial development of Striga asiatica on host and nonhost species. Phytopathology 88:70–75

    PubMed  CAS  Google Scholar 

  • Huang K, Mellor KE, Paul SN, Lawson MJ, Mackey AJ, Timko MP (2012) Global changes in gene expression during compatible and incompatible interactions of cowpea (Vigna unguiculata L.) with the root parasitic angiosperm Striga gesnerioides. BMC Genomics 13:402

    PubMed  CAS  Google Scholar 

  • Irving LJ, Cameron DD (2009) You are what you eat: interactions between root parasitic plants and their hosts. Adv Bot Res 50:87–138

    CAS  Google Scholar 

  • Joel DM, Portnoy VH (1998) The angiospermous root parasite Orobanche L. (Orobanchaceae) induces expression of a pathogenesis related (PR) gene in susceptible tobacco roots. Ann Bot 81:779–781

    Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    PubMed  CAS  Google Scholar 

  • Jorrín J, De Ruck E, Serghini K et al (1996) Biochemical aspects of the parasitism of sunflower by Orobanche. In: Moreno MT, Cubero JI, Berner D, Joel D, Musselman LJ, Parker C (eds) Proceedings of the 6th international symposium on parasitic weed, advances in parasitic plant research. Dirección General de Investigación Agraria, Servicio de Publicaciones y Divulgación, Cordoba, Spain, pp 552–558

    Google Scholar 

  • Kuijt J (1969) The biology of parasitic flowering plants. University of California Press, Berkeley, CA

    Google Scholar 

  • Kusumoto D, Goldwasser Y, Xie X, Yoneyama K, Takeuchi Y (2007) Resistance of red clover (Trifolium pratense) to the root parasitic plant Orobanche minor is activated by salicylate but not by jasmonate. Ann Bot 100:537–544

    PubMed  CAS  Google Scholar 

  • Labrousse P, Arnaud M-C, Serieys H, Bervillé A, Thalouarn P (2001) Several mechanisms are involved in resistance of Helianthus to Orobanche cumana Wallr. Ann Bot 88:859–868

    Google Scholar 

  • Lane JA, Bailey JA, Butler RC, Terry PJ (1993) Resistance of cowpea [Vigna unguiculata (L.) Walp.] to Striga gesnerioides (Willd.) Vatke, a parasitic angiosperm. New Phytol 125:405–412

    Google Scholar 

  • Lane JA, Moore THM, Child DV, Cardwell KF, Singh BB, Bailey JA (1994) Virulence characteristics of a new race of the parasitic angiosperm Striga gesnerioides from southern Benin on cowpea (Vigna unguiculata). Euphytica 72:183–188

    Google Scholar 

  • Lane JA, Moore THM, Child DV, Cardwell KF (1996) Characterization of virulence and geographic distribution of Striga gesnerioides on cowpea in West Africa. Plant Dis 80:299–301

    Google Scholar 

  • Lane JA, Child DV, Reiss GC, Entcheva V, Bailey JA (1997a) Crop resistance to parasitic plants. In: Crute IR, Holub EB, Burdon JJ (eds) The gene-for-gene relationship in plant-parasite interactions. CAB International, Wallingford, Oxon, pp 81–97

    Google Scholar 

  • Lane JA, Moore THM, Child DV, Bailey JA (1997b) Variation in virulence of Striga gesnerioides on cowpea: new sources of resistance. In: Singh BB, Mohan Raj DR, Dashiell KE, Jakai LEN (eds) Advances in cowpea research. International Institute of Tropical Agriculture (IITA) and Japan International Research Center for Agricultural Sciences (JIRCAS), Ibadan, Nigeria, pp 225–230

    Google Scholar 

  • Lejeune A, Constant S, Delavault P, Simier P, Thalouarn P, Thoiron S (2006) Involvement of a putative Lycopersicon esculentum wall-associated kinase in the early steps of tomato–Orobanche ramosa interaction. Physiol Mol Plant Pathol 69:3–12

    CAS  Google Scholar 

  • Letousey P, de Zélicourt A, Vieira Dos Santos C, Thoiron S, Monteau F, Simier P, Thalouarn P, Delavault P (2007) Molecular analysis of resistance mechanisms to Orobanche cumana in sunflower. Plant Pathol 56:536–546

    CAS  Google Scholar 

  • Li J, Timko MP (2009) Gene-for-gene resistance in Striga-cowpea associations. Science 325:1094

    PubMed  CAS  Google Scholar 

  • Li J, Lis KE, Timko MP (2009) Molecular genetics of race-specific resistance of cowpea to Striga gesnerioides (Wilid.). Pest Manag Sci 65:520–527

    PubMed  CAS  Google Scholar 

  • Losner-Goshen D, Portnoy VH, Mayer AM, Joel DM (1998) Pectolytic activity by the haustorium of the parasitic plant Orobanche L. (Orobanchaceae) in host roots. Ann Bot 81:319–326

    CAS  Google Scholar 

  • Lozano-Baena MD, Prats E, Moreno MT, Rubiales D, Pérez-de-Luque A (2007) Medicago truncatula as a model for non-host resistance in legume-parasitic plant interactions. Plant Physiol 145:437–449

    PubMed  CAS  Google Scholar 

  • Mabrouk Y, Simier P, Delavault P, Delgrange S, Sifi B, Zourgui L, Belhadj O (2007a) Molecular and biochemical mechanisms of defence induced in pea by Rhizobium leguminosarum against Orobanche crenata. Weed Res 47:452–460

    CAS  Google Scholar 

  • Mabrouk Y, Simier P, Arfaoui A, Sifi DP, Zourgui L, Belhadj O (2007b) Induction of phenolic compounds in pea (Pisum sativum L.) inoculated by Rhizobium leguminosarum and infected with Orobanche crenata. J Phytopathol 155:728–734

    Google Scholar 

  • Maiti RK, Ramaiah KV, Bisen SS, Chidley VL (1984) A comparative study of the haustorial development of Striga asiatica (L.) Kuntze on sorghum cultivars. Ann Bot 54:447–457

    Google Scholar 

  • McDowell JM, Simon SA (2008) Molecular diversity at the plant-pathogen interface. Dev Comp Immunol 32:736–744

    PubMed  CAS  Google Scholar 

  • Melero-Vara JM, Domínguez J, Fernández-Martínez JM (2000) Update on sunflower broomrape situation in Spain: racial status and sunflower breeding for resistance. Helia 23:45–56

    Google Scholar 

  • Mohamed A, Ellicott A, Housley TL, Ejeta G (2003) Hypersensitive response to Striga infection in sorghum. Crop Sci 43:1320–1324

    Google Scholar 

  • Mohamed AH, Housley TL, Ejeta G (2010) Inheritance of hyper sensitive response to Striga parasitism in sorghum [Sorghum bicolor (L.) Moench]. Afr J Agric Res 19:2720–2729

    Google Scholar 

  • Molinero-Ruiz M, Melero-Vara J, Garcia-Ruiz R, Dominguez J (2006) Pathogenic diversity within field populations of Orobanche cumana and different reactions on sunflower genotypes. Weed Res 46:462–469

    Google Scholar 

  • Molinero-Ruiz ML, Pérez-Vich B, Pineda-Martos R, Melero-Vara JM (2008) Indigenous highly virulent accessions of the sunflower root parasitic weed Orobanche cumana. Weed Res 48:169–178

    Google Scholar 

  • Molinero-Ruiz ML, Garcia-Ruiz R, Melero-Vara JM, Domínguez J (2009) Orobanche cumana race F: performance of resistant sunflower hybrids and aggressiveness of populations of the parasitic weed. Weed Res 49:469–478

    Google Scholar 

  • Mur L, Kenton P, Atzorn R, Miersch O, Wasternack C (2006) The outcomes of concentration-specific interactions between salicylate and jasmonate signalling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol 140:249–262

    PubMed  CAS  Google Scholar 

  • Neumann U, Vian B, Weber HC, Sallé G (1999) Interface between haustoria of parasitic members of the Scrophulariaceae and their hosts: a histochemical and immunocytochemical approach. Protoplasma 207:84–97

    Google Scholar 

  • Olivier A, Benhamou N, Leroux GD (1991a) Cell surface interactions between sorghum roots and the parasitic weed Striga hermonthica: cytochemical aspects of cellulose distribution in resistant and susceptible host tissues. Can J Bot 69:1679–1690

    Google Scholar 

  • Olivier A, Ramaiah KV, Leroux GD (1991b) Selection of sorghum (Sorghum bicolor Moench) varieties resistant to the parasitic weed Striga hermonthica (Del) Benth. Weed Res 31:219–225

    Google Scholar 

  • Ouédraogo JT, Maheshwari V, Berner DK, St-Pierre C-A, Belzile F, Timko MP (2001) Identification of AFLP markers linked to resistance of cowpea (Vigna unguiculata L.) to parasitism by Striga gesnerioides. Theor Appl Genet 102:1029–1036

    Google Scholar 

  • Ouédraogo JT, Olivier A, Timko MP, Belzile FJ (2002a) AFLP markers for resistance against Striga gesnerioides race 1 in cowpea (Vigna unguiculata). Genome 45:787–793

    PubMed  Google Scholar 

  • Ouédraogo JT, Gowda BS, Jean M, Close TJ, Ehlers JD, Hall AE, Gillaspie AG, Roberts PA, Ismail AM, Bruening G, Gepts P, Timko MP, Belzile FJ (2002b) An improved genetic linkage map for cowpea (Vigna unguiculata L.) combining AFLP, RFLP, RAPD and biochemical markers and biological resistance traits. Genome 45:175–188

    PubMed  Google Scholar 

  • Parker C, Polniaszek TI (1990) Parasitism of cowpea by Striga gesnerioides: variation in virulence and discovery of a new source of host resistance. Ann Appl Biol 116:305–311

    Google Scholar 

  • Parker C, Riches CR (1993) Parasitic weeds of the world: biology and control. CAB International, Wallingford, 332 pp

    Google Scholar 

  • Pérez-de-Luque A, Rubiales D, Cubero JI, Press MC, Scholes J, Yoneyama K, Takeuchi Y, Plakhine D, Joel DM (2005a) Interaction between Orobanche crenata and its host legumes: unsuccessful haustorial penetration and necrosis of the developing parasite. Ann Bot 95:935–942

    PubMed  Google Scholar 

  • Pérez-de-Luque A, Jorrín J, Cubero JI, Rubiales D (2005b) Orobanche crenata resistance and avoidance in pea (Pisum spp.) operate at different developmental stages of the parasite. Weed Res 45:379–387

    Google Scholar 

  • Pérez-de-Luque A, González-Verdejo CI, Lozano MD, Dita MA, Cubero JI, González-Melendi P, Risueño MC, Rubiales D (2006a) Protein cross-linking, peroxidase and β-1, 3-endoglucanase involved in resistance of pea against Orobanche crenata. J Exp Bot 57:1461–1469

    PubMed  Google Scholar 

  • Pérez-de-Luque A, Lozano MD, Cubero JI, González-Melendi P, Risueño MC, Rubiales D (2006b) Mucilage production during the incompatible interaction between Orobanche crenata and Vicia sativa. J Exp Bot 57:931–942

    PubMed  Google Scholar 

  • Pérez-de-Luque A, Lozano MD, Rubiales D (2006c) Resistencia post-haustorial a Orobanche crenata en garbanzo. In: De Los Mozos Pascual M, Giménez Alvear MJ, Rodríguez Conde MF, Sánchez Vioque R (eds) Nuevos retos y oportunidades de las leguminosas en el sector agroalimentario español. Consejería de Agricultura de Castilla-La Mancha, Toledo, Spain, pp 361–368

    Google Scholar 

  • Pérez-de-Luque A, Lozano MD, Moreno MT, Testillano PS, Rubiales D (2007) Resistance to broomrape (Orobanche crenata) in faba bean (Vicia faba): cell wall changes associated with pre-haustorial defensive mechanisms. Ann Appl Biol 151:89–98

    Google Scholar 

  • Pérez-de-Luque A, Moreno MT, Rubiales D (2008) Host plant resistance against broomrapes (Orobanche spp.): defence reactions and mechanisms of resistance. Ann Appl Biol 152:131–141

    Google Scholar 

  • Pérez-de-Luque A, Fondevilla S, Pérez-Vich B, Aly R, Thoiron S, Simier P, Castillejo MA, Fernández JM, Jorrín J, Rubiales D, Delavault P (2009) Understanding broomrape-host plant interaction and developing resistance. Weed Res 49:8–22

    Google Scholar 

  • Pérez-Vich B, Akhtouch B, Knapp SJ, Leon AJ, Velasco L, Fernández-Martínez JM, Berry ST (2004a) Quantitative trait loci for broomrape (Orobanche cumana Wallr.) resistance in sunflower. Theor Appl Genet 109:92–102

    PubMed  Google Scholar 

  • Pérez-Vich B, Akhtouch B, Mateos A, Velasco L, Jan CC, Fernández J, Domínguez J, Fernández-Martínez JM (2004b) Dominance relationships for genes conferring resistance to sunflower broomrape (Orobanche cumana Wallr.). Helia 27:183–192

    Google Scholar 

  • Press MC, Graves JD (eds) (1995) Parasitic plants. Chapman & Hall, London

    Google Scholar 

  • Radwan MS, Abdalla MMF, Fischbeck G, Metwally AA, Darwish DS (1988) Variation in reaction of faba bean lines to different accessions of Orobanche crenata Forks. Plant Breed 101:208–216

    Google Scholar 

  • Radwan O, Gandhi S, Heesacker A et al (2008) Genetic diversity and genomic distribution of homologs encoding NBS-LRR disease resistance proteins in sunflower. Mol Genet Genom 280:111–125

    CAS  Google Scholar 

  • Ramaiah KV (1987) Control of Striga and Orobanche species – a review. In: Weber H Chr, Forstreuter W (eds) Parasitic flowering plants. Proceedings of the 4th ISPFP, Marburg, FRG, pp 637–664

    Google Scholar 

  • Rich PJ, Grenier C, Ejeta G (2004) Striga resistance in the wild relatives of sorghum. Crop Sci 4:2221–2229

    Google Scholar 

  • Riopel JL, Timko MP (1995) Haustorial initiation and differentiation. In: Press MC, Graves JD (eds) Parasitic plants. Chapman & Hall, London, pp 39–73

    Google Scholar 

  • Rodenburg J, Riches CR, Kayeke JM (2010) Addressing current and future problems of parasitic weeds in rice. Crop Prot 29:210–221

    Google Scholar 

  • Rodriguez-Conde MF, Moreno MT, Cubero JI, Rubiales D (2004) Characterization of the Orobanche-Medicago truncatula association for studying early stages of the parasite–host interaction. Weed Res 44:218–223

    Google Scholar 

  • Rodríguez-Ojeda MI, Fernández-Escobar J, Alonso LC (2001) Sunflower inbred line (KI-374) carrying two recessive genes for resistance against a highly virulent Spanish population of Orobanche cernua Loefl./O. cumana Wallr. race “F”. In: Fer A, Thalouarn P, Joel D, Musselman LJ, Parker C, Verkleij JAC (eds) Proceedings of the 7th international parasitic weed symposium. University of Nantes, France, pp 208–211

    Google Scholar 

  • Román B, Torres AM, Rubiales D, Cubero JI, Šatović Z (2002) Mapping of quantitative trait loci controlling broomrape (Orobanche crenata Forks.) resistance in faba bean (Vicia faba L.). Genome 45:1057–1063

    PubMed  Google Scholar 

  • Ronald PC, Beutler B (2010) Plant and animal sensors of conserved microbial signatures. Science 330:1061–1064

    PubMed  CAS  Google Scholar 

  • Rubiales D (2001) Parasitic plants: an increasing threat. Grain Legumes 33:10–11

    Google Scholar 

  • Rubiales D, Pérez de Luque A, Joel DM, Alcántara C, Sillero JC (2003) Characterization of resistance in chickpea to crenate broomrape (Orobanche crenata). Weed Sci 51:702–707

    CAS  Google Scholar 

  • Rubiales D, Moreno MT, Sillero JC (2005) Search for resistance to crenate broomrape (Orobanche crenata) in pea germplasm. Genet Resour Crop Evol 52:853–861

    Google Scholar 

  • Rubiales D, Pérez-de-Luque A, Fernández-Aparicio M, Sillero JC, Román B, Kharrat M, Khalil S, Joel DM, Riches C (2006) Screening techniques and sources of resistance against parasitic weeds in grain legumes. Euphytica 147:87–199

    Google Scholar 

  • Rümer S, Cameron DD, Wacker R, Hartung W, Jiang F (2007) An anatomical study of the haustoria of Rhinanthus minor attached to roots of different hosts. Flora 202:194–200

    Google Scholar 

  • Runyon J, Mescher M, Felton G, de Moraes C (2010) Parasitism by Cuscuta pentagona sequentially induces JA and SA defence pathways in tomato. Plant Cell Environ 33:290–303

    PubMed  CAS  Google Scholar 

  • Ryu H, Han M, Lee S, Cho J, Ryoo N, Heu S, Lee Y, Bhoo S, Wang G, Hahn T, Jeon JS (2006) A comprehensive expression analysis of the WRKY gene superfamily in rice plants during defence response. Plant Cell Rep 25:836–847

    PubMed  CAS  Google Scholar 

  • Scholes JD, Press MC (2008) Striga infestation of cereal crops – an unsolved problem in resource limited agriculture. Curr Opin Plant Biol 11:180–186

    PubMed  Google Scholar 

  • Shergini K, Pérez de Luque A, Castejón Muñoz M, García-Torres L, Jorrín JV (2001) Sunflower (Helianthus annuus L.) response to broomrape (Orobanche cernua Loefl.) parasitism: induced synthesis and excretion of 7-hydroxylated simple coumarins. J Exp Bot 52:2227–2234

    Google Scholar 

  • Shomer-Ilan A (1993) Germinating seeds of the root parasite Orobanche aegyptiaca Pers. excrete enzymes with carbohydrase activity. Symbiosis 15:61–70

    CAS  Google Scholar 

  • Sillero JC, Moreno MT, Rubiales D (2005) Sources of resistance to crenate broomrape among species of Vicia. Plant Dis 89:23–27

    Google Scholar 

  • Singh BB, Emechebe AM (1990) Inheritance of Striga resistance in cowpea genotype B301. Crop Sci 30:879–881

    Google Scholar 

  • Swarbrick PJ, Huang K, Liu G, Slate J, Press MC, Scholes JD (2008) Global patterns of gene expression in rice cultivars undergoing a susceptible or resistant interaction with the parasitic plant Striga hermonthica. New Phytol 179:515–529

    PubMed  CAS  Google Scholar 

  • Takken FL, Albrecht M, Tameling WI (2006) Resistance proteins: molecular switches of plant defence. Curr Opin Plant Biol 9:383–390

    PubMed  CAS  Google Scholar 

  • Tameling WIL, Joosten MHAJ (2007) The diverse roles of NB-LRR proteins in plants. Physiol Mol Plant Pathol 71:126–134

    CAS  Google Scholar 

  • Tang S, Heesacher A, Kishore VK, Fernandez A, Sadik ES, Cole G, Knapp SJ (2003) Genetic mapping of the Or5 gene for resistance to Orobanche race E in sunflower. Crop Sci 43:1021–1028

    CAS  Google Scholar 

  • ter Borg SJ (1999) Broomrape resistance in faba bean: what do we know? In: Cubero JI, Moreno MT, Rubiales D, Sillero JC (eds) Resistance to broomrape, the state of the art. Junta de Andalucıa, Sevilla, Spain, pp 25–41

    Google Scholar 

  • Thordal-Christensen H (2003) Fresh insights into processes of nonhost resistance. Curr Opin Plant Biol 6:351–357

    PubMed  CAS  Google Scholar 

  • Timko MP, Singh BB (2008) Cowpea, a multifunctional legume. In: Moore PH, Ming R (eds) Genomics of tropical crop plants. Springer Science + Business Media LLC, New York, pp 227–258

    Google Scholar 

  • Timko MP, Gowda BS, Ouedraogo J, Ousmane B (2007) Molecular markers for analysis of resistance to Striga gesnerioides in cowpea. In: Ejeta G, Gressell J (eds) Integrating new technologies for Striga control: towards ending the witch-hunt. World Scientific, Singapore, pp 115–128

    Google Scholar 

  • Timko MP, Rushton PJ, Laudeman TW, Bokowiec MT, Chipumuro E, Cheung F, Town CD, Chen X (2008) Sequencing and analysis of the gene-rich space of cowpea. BMC Genomics 9:103

    PubMed  Google Scholar 

  • Torto-Alalibo T, Collmer CW, Lineberg M, Bird D, Collmer A, Tyler BM (2009) Common and contrasting themes in host cell-targeted effectors from bacterial, fungal, oomycete and nematode plant symbionts described using the gene ontology. BMC Microbiol 9(Suppl 1):S3. doi:10.1186/1471-2180-9-S1-S3

    PubMed  Google Scholar 

  • Touré M, Olivier A, Ntare BR, Lane JA, St. Pierre C-A (1997) Inheritance of resistance to Striga gesnerioides biotypes from Mali and Niger in cowpea (Vigna unguiculata (L.) Walp.). Euphytica 94:273–278

    Google Scholar 

  • Tyler BM (2009) Entering and breaking: virulence effector proteins of oomycete plant pathogens. Cell Microbiol 11:13–20

    PubMed  CAS  Google Scholar 

  • Valderrama MR, Román B, Satovic Z, Rubiales D, Cubero JI, Torres AM (2004) Locating quantitative trait loci associated with Orobanche crenata resistance in pea. Weed Res 44:1–6

    Google Scholar 

  • van der Hoorn RAL, Kamoun S (2008) From guard to decoy: a new model for perception of plant pathogen effectors. Plant Cell 20:2009–2017

    PubMed  Google Scholar 

  • Velasco L, Pérez-Vich B, Jan CC, Fernández-Martínez JM (2006) Inheritance of resistance to broomrape (Orobanche cumana Wallr.) race F in a sunflower line carrying resistance genes from wild sunflower species. Plant Breed 126:67–71

    Google Scholar 

  • Vieira Dos Santos C, Letousey P, Delavault P, Thalouarn P (2003a) Defence gene expression analysis of Arabidopsis thaliana parasitized by Orobanche ramosa. Phytopathology 93:451–457

    PubMed  Google Scholar 

  • Vieira Dos Santos C, Delavault P, Letousey P, Thalouarn P (2003b) Identification by suppression subtractive hybridization and expression analysis of Arabidopsis thaliana putative defence genes during Orobanche ramosa infection. Physiol Mol Plant Pathol 62:297–303

    CAS  Google Scholar 

  • Volgler RK, Ejeta G, Butler LG (1996) Inheritance of low production of Striga germination stimulant in sorghum. Crop Sci 36:1185

    Google Scholar 

  • Vrânceanu AV, Tudor VA, Stoenescu FM, Pirvu N (1980) Virulence groups of Orobanche cumana Wallr., differential hosts and resistance source genes in sunflower. In: International Sunflower Association (ed) Proceedings of the 9th international sunflower conference. LH/VPO, Torremolinos, Spain, pp 74–82

    Google Scholar 

  • Westwood J, Yu X, Foy C, Cramer C (1996) Parasitization by Orobanche induces expression of a defence-related gene in tobacco. In: Moreno MT, Cubero JI, Berner D, Joel D, Musselman LJ, Parker C (eds) Proceedings of the 6th international parasitic weed symposium, advances in parasitic plant research. Dirección General de Investigación Agraria, Cordoba, Spain, pp 543–550

    Google Scholar 

  • Westwood JH, Yu X, Foy CL, Cramer CL (1998) Expression of a defence-related 3-hydroxy-3-methylglutaryl CoA reductase gene in response to parasitization by Orobanche spp. Mol Plant Microbe Interact 11:530–536

    PubMed  CAS  Google Scholar 

  • Wilson JP, Hess DE, Hanna WW (2000) Resistance to Striga hermonthica in wild accessions of the primary gene pool of Pennisetum glaucum. Phytopathology 90:1169–1172

    PubMed  CAS  Google Scholar 

  • Wilson JP, Hess DE, Hanna WW, Kumar KA, Gupta SC (2004) Pennisetum glaucum subsp. monodii accessions with Striga resistance in West Africa. Crop Prot 23:865–870

    Google Scholar 

  • Yoshida S, Shirasu K (2009) Multiple layers of incompatibility to the parasitic witchweed, Striga hermonthica. New Phytol 183:180–189

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the present and former members of our laboratories for their research contributions over the years, especially Kan Huang, Karolina Mellor and Monica Fernández-Aparicio for their critical reading and comments. This work was supported by grants from the National Science Foundation (DBI-0701748 and IBN-0322420) and Kirkhouse Trust to MPT and the Biotechnology and Biological Sciences Research Council (BBSRC) to JDS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Timko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Timko, M.P., Scholes, J.D. (2013). Host Reaction to Attack by Root Parasitic Plants. In: Joel, D., Gressel, J., Musselman, L. (eds) Parasitic Orobanchaceae. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38146-1_7

Download citation

Publish with us

Policies and ethics