Skip to main content

Robustness and Evolvability of Recombination in Linear Genetic Programming

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7831))

Abstract

The effect of neutrality on evolutionary search is known to be crucially dependent on the distribution of genotypes over phenotypes. Quantitatively characterizing robustness and evolvability in genotype and phenotype spaces greatly helps to understand the influence of neutrality on Genetic Programming. Most existing robustness and evolvability studies focus on mutations with a lack of investigation of recombinational operations. Here, we extend a previously proposed quantitative approach of measuring mutational robustness and evolvability in Linear GP. By considering a simple LGP system that has a compact representation and enumerable genotype and phenotype spaces, we quantitatively characterize the robustness and evolvability of recombination at the phenotypic level. In this simple yet representative LGP system, we show that recombinational properties are correlated with mutational properties. Utilizing a population evolution experiment, we demonstrate that recombination significantly accelerates the evolutionary search process and particularly promotes robust phenotypes that innovative phenotypic explorations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altenberg, L.: The evolution of evolvability in genetic programming. In: Advances in Genetic Programming, pp. 47–74. MIT Press, Cambridge (1994)

    Google Scholar 

  2. Azevedo, R.B., Lohaus, R., Srinivasan, S., Dang, K.K., Burch, C.L.: Sexual reproduction selects for robustness and negative epistasis in artificial gene networks. Nature 440(2), 87–90 (2006)

    Article  Google Scholar 

  3. Banzhaf, W.: Genotype-phenotype mapping and neutral variation - a case study in genetic programming. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 322–332. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  4. Banzhaf, W., Leier, A.: Evolution on neutral networks in genetic programming. In: Yu, T., Riolo, R., Worzel, B. (eds.) Genetic Programming Theory and Practice III, ch. 14, pp. 207–221. Springer (2006)

    Google Scholar 

  5. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming: An Introduction. Morgan Kaufmann (1998)

    Google Scholar 

  6. Cowperthwaite, M.C., Economo, E.P., Harcombe, W.R., Miller, E.L., Meyers, L.A.: The ascent of the abundant: How mutational networks constrain evolution. PLoS Computational Biology 4(7), e1000110 (2008)

    Google Scholar 

  7. De Visser, J.A.G.M., Hermission, J., Wagner, G.P., Meyers, L.A., Bagheri-Chaichian, H., et al.: Evolution and detection of genetic robustness. Evolution 57(9), 1959–1972 (2003)

    Google Scholar 

  8. Draghi, J.A., Parsons, T.L., Wagner, G.P., Plotkin, J.B.: Mutational robustness can facilitate adaptation. Nature 463, 353–355 (2010)

    Article  Google Scholar 

  9. Ebner, M., Shackleton, M., Shipman, R.: How neutral networks influence evolvability. Complexity 7(2), 19–33 (2002)

    Article  MathSciNet  Google Scholar 

  10. Francone, F.D., Conrads, M., Banzhaf, W., Nordin, P.: Homologous crossover in genetic programming. In: Banzhaf, W., Daida, J.M., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M.J., Smith, R.E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1021–1026 (1999)

    Google Scholar 

  11. Galvan-Lopez, E., Poli, R.: An empirical investigation of how and why neutrality affects evolutionary search. In: Cattolico, M. (ed.) Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1149–1156 (2006)

    Google Scholar 

  12. Hansen, J.V.: Genetic programming experiments with standard and homologous crossover methods. Genetic Programming and Evolvable Machines 4, 53–66 (2003)

    Article  MATH  Google Scholar 

  13. Hu, T., Banzhaf, W.: Neutrality and variability: two sides of evolvability in linear genetic programming. In: Rothlauf, F. (ed.) Proceedings of the Genetic and Evolutionary Computation Conference, pp. 963–970 (2009)

    Google Scholar 

  14. Hu, T., Payne, J.L., Banzhaf, W., Moore, J.H.: Robustness, Evolvability, and Accessibility in Linear Genetic Programming. In: Silva, S., Foster, J.A., Nicolau, M., Machado, P., Giacobini, M. (eds.) EuroGP 2011. LNCS, vol. 6621, pp. 13–24. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  15. Hu, T., Payne, J.L., Banzhaf, W., Moore, J.H.: Evolutionary dynamics on multiple scales: a quantitative analysis of the interplay between genotype, phenotype, and fitness in linear genetic programming. Genetic Programming and Evolvable Machines 13, 305–337 (2012)

    Article  Google Scholar 

  16. Kirschner, M., Gerhart, J.: Evolvability. Proceedings of the National Academy of Sciences 95, 8420–8427 (1998)

    Article  Google Scholar 

  17. Landry, C.R., Lemos, B., Rifkin, S.A., Dickinson, W.J., Hartl, D.L.: Genetic properties influcing the evolvability of gene expression. Science 317, 118–121 (2007)

    Article  Google Scholar 

  18. Lenski, R.E., Barrick, J.E., Ofria, C.: Balancing robustness and evolvability. PLoS Biology 4(12), e428 (2006)

    Google Scholar 

  19. Luke, S., Spector, L.: A comparison of crossover and mutation in genetic programming. In: Koza, J.R., Deb, K., Dorigo, M., Fogel, D.B., Garzon, M., Iba, H., Riolo, R.L. (eds.) Proceedings of the Annual Conference on Genetic Programming, pp. 240–248 (1997)

    Google Scholar 

  20. Martin, O.C., Wagner, A.: Effects of recombination on complex regulatory circuits. Genetics 183, 673–684 (2009)

    Article  Google Scholar 

  21. Masel, J., Trotter, M.V.: Robustness and evolvability. Trends in Genetics 26, 406–414 (2010)

    Article  Google Scholar 

  22. McBride, R.C., Ogbunugafor, C.B., Turner, P.E.: Robustness promotes evolvability of thermotolerance in an RNA virus. BMC Evolutionary Biology 8, 231 (2008)

    Article  Google Scholar 

  23. Neher, R.A., Shraiman, B.I., Fisher, D.S.: Rate of adaptation in large sexual populations. Genetics 184, 467–481 (2010)

    Article  Google Scholar 

  24. Otto, S.P.: The evolutionary enigma of sex. The American Naturalist 174(s1), s1–s14 (2009)

    Google Scholar 

  25. Pigliucci, M.: Is evolvability evolvable? Nature Review Genetics 9, 75–82 (2008)

    Article  Google Scholar 

  26. Platel, M.D., Clergue, M., Collard, P.: Maximum Homologous Crossover for Linear Genetic Programming. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 194–203. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  27. Poli, R., Langdon, W.B.: On the search properties of different crossover operators in genetic programming. In: Koza, J.R., Banzhaf, W., Chellapilla, K., Deb, K., Dorigo, M., Fogel, D.B., Garzon, M.H., Goldberg, D.E., Iba, H., Riolo, R.L. (eds.) Proceedings of the Annual Conference on Genetic Programming, pp. 293–301 (1998)

    Google Scholar 

  28. Rothlauf, F., Goldberg, D.E.: Redundant representations in evolutionary computation. Evolutionary Computation 11(4), 381–415 (2003)

    Article  Google Scholar 

  29. Soule, T.: Resilient individuals improve evolutionary search. Artificial Life 12, 17–34 (2006)

    Article  Google Scholar 

  30. Soule, T., Heckendorn, R.B.: An analysis of the causes of code growth in genetic programming. Genetic Programming and Evolvable Machines 3, 283–309 (2002)

    Article  MATH  Google Scholar 

  31. Wagner, A.: Robustness, evolvability, and neutrality. Federation of European Biochemical Societies Letters 579(8), 1772–1778 (2005)

    Article  Google Scholar 

  32. Wagner, A.: Robustness and evolvability: A paradox resolved. Proceedings of The Royal Society B 275(1630), 91–100 (2008)

    Article  Google Scholar 

  33. Wagner, A.: The low cost of recombination in creating novel phenotypes. BioEssays 33(8), 636–646 (2011)

    Article  Google Scholar 

  34. White, D.R., Poulding, S.: A Rigorous Evaluation of Crossover and Mutation in Genetic Programming. In: Vanneschi, L., Gustafson, S., Moraglio, A., De Falco, I., Ebner, M. (eds.) EuroGP 2009. LNCS, vol. 5481, pp. 220–231. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  35. Wilke, C.O.: Adaptive evolution on neutral networks. Bulletin of Mathematical Biology 63, 715–730 (2001)

    Article  Google Scholar 

  36. Yu, T., Miller, J.F.: Through the interaction of neutral and adaptive mutations, evolutionary search finds a way. Artificial Life 12, 525–551 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hu, T., Banzhaf, W., Moore, J.H. (2013). Robustness and Evolvability of Recombination in Linear Genetic Programming. In: Krawiec, K., Moraglio, A., Hu, T., Etaner-Uyar, A.Ş., Hu, B. (eds) Genetic Programming. EuroGP 2013. Lecture Notes in Computer Science, vol 7831. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37207-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37207-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37206-3

  • Online ISBN: 978-3-642-37207-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics