Skip to main content

Context Enhanced Graphical Model for Object Localization in Medical Images

  • Conference paper
Medical Computer Vision. Recognition Techniques and Applications in Medical Imaging (MCV 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7766))

Included in the following conference series:

  • 1660 Accesses

Abstract

Object localization is an important step common to many different medical applications. In this Chapter, we will review the challenges and recent approaches tackling this problem, and focus on the work by Song et.al. [20]. In [20], a new graphical model with additional contrast and interest-region potentials is designed, encoding the higher-order contextual information between regions, on the global and structural levels. A discriminative sparse-coding based interest-region detector is also integrated as one of the context prior in the graphical model. This object localization method is generally applicable to different medical imaging applications, in which the objects can be distinguished from the background mainly based on feature differences. Successful applications on two different medical imaging applications – lesion dissimilarity on thoracic PET-CT images and cell segmentation on microscopic images – are demonstrated in the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(1), 4311–4322 (2006)

    Article  MathSciNet  Google Scholar 

  2. Ben Ayed, I., Punithakumar, K., Garvin, G., Romano, W., Li, S.: Graph Cuts with Invariant Object-Interaction Priors: Application to Intervertebral Disc Segmentation. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 221–232. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Bauer, S., Nolte, L.-P., Reyes, M.: Fully Automatic Segmentation of Brain Tumor Images Using Support Vector Machine Classification in Combination with Hierarchical Conditional Random Field Regularization. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893, pp. 354–361. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Cheng, L., Ye, N., Yu, W., Cheah, A.: Discriminative Segmentation of Microscopic Cellular Images. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part I. LNCS, vol. 6891, pp. 637–644. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Feuerstein, M., Glocker, B., Kitasaka, T., Nakamura, Y., Iwano, S., Mori, K.: Mediastinal atlas creation from 3-d chest computed tomography images: application to automated detection and station mapping of lymph nodes. Med. Image Anal. 16(1), 63–74 (2011)

    Article  Google Scholar 

  6. Gonfaus, J., Boix, X.: Harmony potentials for joint classification and segmentation. In: CVPR, pp. 3280–3287 (2010)

    Google Scholar 

  7. Guo, R., Dai, Q., Hoiem, D.: Single-image shadow detection and removal using paired regions. In: CVPR, pp. 2033–2040 (2011)

    Google Scholar 

  8. Jagadeesh, V., Vu, N., Manjunath, B.S.: Multiple Structure Tracing in 3D Electron Micrographs. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part I. LNCS, vol. 6891, pp. 613–620. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Jiang, Z., Lin, Z., Davis, L.: Learning a discriminative dictionary for sparse coding via label consistent K-SVD. In: CVPR, pp. 1697–1704 (2011)

    Google Scholar 

  10. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 147–159 (2004)

    Article  Google Scholar 

  11. Ladicky, L., Russell, C., Kohli, P., Torr, P.H.S.: Associative hierarchical CRFs for object class image segmentation. In: ICCV, pp. 739–746 (2009)

    Google Scholar 

  12. Ladický, Ľ., Sturgess, P., Alahari, K., Russell, C., Torr, P.H.S.: What, Where and How Many? Combining Object Detectors and CRFs. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 424–437. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Lezoray, O., Cardot, H.: Cooperation of color pixel classification schemes and color watershed: a study for microscopical images. IEEE Trans. Image Process. 11(7), 783–789 (2002)

    Article  Google Scholar 

  14. Liu, M., Lu, L., Ye, X., Yu, S., Salganicoff, M.: Sparse Classification for Computer Aided Diagnosis Using Learned Dictionaries. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893, pp. 41–48. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  15. Lu, C., Chelikani, S., Jaffray, D.A., Milosevic, M.F., Staib, L.H., Juncan, J.S.: Simultaneous nonrigid registration, segmentation, and tumor detection in MRI guided cervical cancer radiation therapy. IEEE Trans. Med. Imag. 31(6), 1213–1227 (2012)

    Article  Google Scholar 

  16. van Ravesteijin, V.F., van Wijk, C., Vos, F.M., Truyen, R., Peters, J.F., Stoker, J., van Vliet, L.J.: Computer-aided detection of polyps in CT colonography using logistic regression. IEEE Trans. Med. Imag. 29(1), 120–131 (2010)

    Article  Google Scholar 

  17. Shotton, J., Winn, J.M., Rother, C., Criminisi, A.: TextonBoost: Joint Appearance, Shape and Context Modeling for Multi-class Object Recognition and Segmentation. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 1–15. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Song, Y., Cai, W., Eberl, S., Fulham, M.J., Feng, D.: Discriminative Pathological Context Detection in Thoracic Images Based on Multi-level Inference. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893, pp. 191–198. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  19. Song, Y., Cai, W., Eberl, S., Fulham, M., Feng, D.: Thoracic image case retrieval with spatial and contextual information. In: ISBI, pp. 1885–1888 (2011)

    Google Scholar 

  20. Song, Y., Cai, W., Huang, H., Wang, Y., Feng, D.D.: Object localization in medical images based on graphical model with contrast and interest-region terms. In: CVPR Workshop, pp. 1–7 (2012)

    Google Scholar 

  21. Song, Y., Cai, W., Kim, J., Feng, D.D.: A multistage discriminative model for tumor and lymph node detection in thoracic images. IEEE Trans. Med. Imag. 31(5), 1061–1075 (2012)

    Article  Google Scholar 

  22. Suykens, J., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Letters 9(3), 293–300 (1999)

    Article  MathSciNet  Google Scholar 

  23. Tropp, J.: Greed is good: algorithmic results for sparse approximation. IEEE Trans. Inf. Theory 50(10), 2231–2242 (2004)

    Article  MathSciNet  Google Scholar 

  24. Vedaldi, A., Soatto, S.: Quick Shift and Kernel Methods for Mode Seeking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 705–718. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  25. Wu, D., Lu, L., Bi, J., Shinagawa, Y., Boyer, K., Krishnan, A., Salganicoff, M.: Stratified learning of local anatomical context for lung nodules in CT images. In: CVPR, pp. 2791–2798 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Song, Y., Cai, W., Huang, H., Wang, Y., Feng, D.D. (2013). Context Enhanced Graphical Model for Object Localization in Medical Images. In: Menze, B.H., Langs, G., Lu, L., Montillo, A., Tu, Z., Criminisi, A. (eds) Medical Computer Vision. Recognition Techniques and Applications in Medical Imaging. MCV 2012. Lecture Notes in Computer Science, vol 7766. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36620-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36620-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36619-2

  • Online ISBN: 978-3-642-36620-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics