Skip to main content

ECM in Hydra Development and Regeneration

  • Chapter
  • First Online:
  • 1274 Accesses

Part of the book series: Biology of Extracellular Matrix ((BEM))

Abstract

The body wall of Hydra is organized by two layers of epithelia (ectoderm and endoderm) with an intervening extracellular matrix (ECM), termed mesoglea by early biologists. Morphological studies have determined that Hydra ECM is composed of two basal lamina layers located underneath each epithelial cell layer and a centrally located intervening interstitial matrix. Molecular and biochemical analyses of Hydra ECM have established that it contains components similar to those seen in more complicated vertebrate species. These components include laminin, type IV collagen, and various fibrillar collagens. Hydra ECM components are synthesized in a complicated manner involving cross talk between the epithelial layers. Any perturbation to ECM biogenesis leads to a blockage in Hydra morphogenesis. Blockage in ECM–cell interactions in the adult polyp also leads to problems in epithelial transdifferentiation processes. In terms of biophysical features, Hydra ECM is highly flexible, a property that facilitates continuous movements along the organism’s longitudinal and radial axis. This is in contrast to the more rigid matrices found in vertebrates. The flexible nature of Hydra ECM can in part be explained by the unique structure of the organism’s type IV collagen and fibrillar collagens. This chapter focuses on (1) the general structure of Hydra ECM, (2) its molecular composition, (3) the biogenesis of Hydra ECM during regeneration, (4) Hydra ECM in development, (5) cell–ECM interaction in Hydra, and (6) Hydra ECM remodeling during development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agbas A, Sarras MP Jr (1994) Evidence for cell surface extracellular matrix binding proteins in Hydra vulgaris. Cell Adhes Commun 2:59–73

    Article  PubMed  CAS  Google Scholar 

  • Alexi X, Berditchevski F, Odintsova E (2011) The effect of cell-ECM adhesion on signaling via the ErbB family of growth factor receptors. Biochem Soc Trans 39(2):568–573

    Article  PubMed  CAS  Google Scholar 

  • Aufschnaiter R, Zamir EA, Little CD, Ozbek S, Munder S, David CN, Li L, Sarras MPJ (2011) In vivo imaging of basement membrane movement: ECM patterning shapes Hydra polyps. J Cell Sci 124:4027–4038

    Article  PubMed  CAS  Google Scholar 

  • Aumailley M, Bruckner-Tuderman L, Carter WG, Deutzmann R, Edgar D, Ekblom P, Engel J, Engvall E, Hohenester E, Jones JC, Kleinman HK, Marinkovich MP, Martin GR, Mayer U, Meneguzzi G, Miner JH, Miyazaki K, Patarroyo M, Paulsson M, Quaranta V, Sanes JR, Sasaki T, Sekiguchi K, Sorokin LM, Talts JF, Tryggvason K, Uitto J, Virtanen I, von der Mark K, Wewer UM, Yamada Y, Yurchenco PD (2005) A simplified laminin nomenclature. Matrix Biol 24:326–332

    Article  PubMed  CAS  Google Scholar 

  • Barzansky B, Lenhoff HM (1974) On the chemical composition and developmental role of the mesoglea of Hydra. Amer Zool 14:575–581

    CAS  Google Scholar 

  • Barzansky B, Lenhoff HM, Bode H (1975) Hydra mesoglea: similarity of its amino acid and neutral sugar composition to that of vertebrate basal lamina. Comp Biochem Physiol B 50:419–424

    Article  PubMed  CAS  Google Scholar 

  • Beckmann A, Ozbek S (2012) The nematocyst: a molecular map of the cnidarian stinging organelle. Int J Dev Biol 56(6–8):577–582

    Article  PubMed  CAS  Google Scholar 

  • Benson S, Page L, Ingersoll E, Rosenthal E, Dungca K, Signor D (1999) Developmental characterization of the gene for laminin alpha-chain in sea urchin embryos. Mech Dev 81(1–2):37–49

    Article  PubMed  CAS  Google Scholar 

  • Blumberg B, Mackrell AJ, Fessler JH (1988) Drosophila basement membrane procollagen alpha 1(IV). II. Complete cDNA sequence, genomic structure, and general implications for supramolecular assemblies. J Biol Chem 263:18328–18337

    PubMed  CAS  Google Scholar 

  • Bode H (1974) Activity of Hydra cells in vitro and in regenerating cell reaggregates. Am Zool 14:543–550

    Google Scholar 

  • Bode H (1996) The interstitial cell lineage of hydra: a stem cell system that arose early in evolution. J Cell Sci 109:1155–1164

    PubMed  CAS  Google Scholar 

  • Bode H (2003) Head regeneration in Hydra. Dev Dyn 226:225–236

    Article  PubMed  Google Scholar 

  • Bode H (2011) Axis formation in Hydra. Annu Rev Genet 45:105–117

    Article  PubMed  CAS  Google Scholar 

  • Borza DB, Miner JH, Hudson BG (2000) Basement membrane and cellular components of the nephron. In: Massry SG, Glassock RJ (eds) Massry and Glassock’s textbook of nephrology. Lippincott Williams and Wilkins, New York, pp 37–42

    Google Scholar 

  • Burgeson RE, Chiquet M, Deutzmann R, Ekblom P, Engel J, Kleinman H, Martin GR, Meneguzzi G, Paulsson M, Sanes J et al (1994) A new nomenclature for the laminins. Matrix Biol 14:209–211

    Article  PubMed  CAS  Google Scholar 

  • Campbell RD (1967) Tissue dynamics of steady state growth in Hydra littoralis. II. Patterns of tissue movement. J Morphol 121(1):19–28

    Article  PubMed  CAS  Google Scholar 

  • Campbell RD (1973) Vital marking of single cells in developing tissues: India ink injection to trace tissue movements in hydra. J Cell Sci 13:651–661

    PubMed  CAS  Google Scholar 

  • Champliaud MF, Lunstrum GP, Rousselle P, Nishiyama T, Keene DR, Burgeson RE (1996) Human amnion contains a novel laminin variant, laminin 7, which like laminin 6, covalently associates with laminin 5 to promote stable epithelial-stromal attachment. J Cell Biol 132:1189–1198

    Article  PubMed  CAS  Google Scholar 

  • Chapman JA, Kirkness EF, Simakov O, Hampson SE, Mitros T, Weinmaier T, Rattei T, Balasubramanian PG, Borman J, Busam D, Disbennett K, Pfannkoch C, Sumin N, Sutton GG, Viswanathan LD, Walenz B, Goodstein DM, Hellsten U, Kawashima T, Prochnik SE, Putnam NH, Shu S, Blumberg B, Dana CE, Gee L, Kibler DF, Law L, Lindgens D, Martinez DE, Peng J, Wigge PA, Bertulat B, Guder C, Nakamura Y, Ozbek S, Watanabe H, Khalturin K, Hemmrich G, Franke A, Augustin R, Fraune S, Hayakawa E, Hayakawa S, Hirose M, Hwang JS, Ikeo K, Nishimiya-Fujisawa C, Ogura A, Takahashi T, Steinmetz PR, Zhang X, Aufschnaiter R, Eder MK, Gorny AK, Salvenmoser W, Heimberg AM, Wheeler BM, Peterson KJ, Bottger A, Tischler P, Wolf A, Gojobori T, Remington KA, Strausberg RL, Venter JC, Technau U, Hobmayer B, Bosch TC, Holstein TW, Fujisawa T, Bode HR, David CN, Rokhsar DS, Steele RE (2010) The dynamic genome of Hydra. Nature 464:592–596

    Article  PubMed  CAS  Google Scholar 

  • Colognato H, Yurchenco PD (2000) Form and function: the laminin family of heterotrimers. Dev Dyn 218:213–234

    Article  PubMed  CAS  Google Scholar 

  • Colognato H, Winkelmann DA, Yurchenco PD (1999) Laminin polymerization induces a receptor-cytoskeleton network. J Cell Biol 145:619–631

    Article  PubMed  CAS  Google Scholar 

  • Darribere T, Skalski M, Cousin HL, Gaultier A, Montmory C, Alfandari D (2000) Integrins: regulators of embryogenesis. Biol Cell 92:5–25

    Article  PubMed  CAS  Google Scholar 

  • Davis LE, Haynes JF (1968) An ultrastructural examination of the mesoglea of Hydra. Z Zellforsch Mikrosk Anat 92:149–158

    Article  PubMed  CAS  Google Scholar 

  • Deutzmann R, Fowler S, Zhang X, Boone K, Dexter S, Boot-Handford RP, Rachel R, Sarras MP (2000) Molecular, biochemical and functional analysis of a novel and developmentally important fibrillar collagen (Hcol-I) in hydra. Development 127:4669–4680

    PubMed  CAS  Google Scholar 

  • Exposito JY, Garrone R (1990) Characterization of a fibrillar collagen gene in sponges reveals the early evolutionary appearance of two collagen gene families. Proc Natl Acad Sci USA 87(17):6669–6673

    Article  PubMed  CAS  Google Scholar 

  • Exposito JY, D’Alessio M, Solursh M, Ramirez F (1992) Sea urchin collagen evolutionarily homologous to vertebrate pro-alpha 2(I) collagen. J Biol Chem 267(22):15559–15562

    PubMed  CAS  Google Scholar 

  • Fowler SJ, Jose S, Zhang X, Deutzmann R, Sarras MP Jr, Boot-Handford RP (2000) Characterization of hydra type IV collagen. Type IV collagen is essential for head regeneration and its expression is up-regulated upon exposure to glucose. J Biol Chem 275:39589–39599

    Article  PubMed  CAS  Google Scholar 

  • Galliano MF, Aberdam D, Aguzzi A, Ortonne JP, Meneguzzi G (1995) Cloning and complete primary structure of the mouse laminin alpha 3 chain. Distinct expression pattern of the laminin alpha 3A and alpha 3B chain isoforms. J Biol Chem 270(37):21820–21826

    Article  PubMed  CAS  Google Scholar 

  • Gauthier GF (1963) Cytological studies on the gastroderm of Hydra. J Exp Zool 152:13–40

    Article  Google Scholar 

  • Gierer A, Berking S, Bode H, David CN, Flick K, Hansmann G, Schaller H, Trenkner E (1972) Regeneration of hydra from reaggregated cells. Nature 239:98–101

    Article  CAS  Google Scholar 

  • Gonzalez-Agosti C, Stidwill R (1991) In vitro migration of Hydra nematocytes: the influence of the natural extracellular matrix (the mesoglea, of collagen type IV and type, laminin, and fibronectin) on cell attachment, migration parameters and patterns of cytoskeletal proteins. Cell Motil Cytoskeleton 20:215–227

    Article  CAS  Google Scholar 

  • Guo XD, Johnson JJ, Kramer JM (1991) Embryonic lethality caused by mutations in basement membrane collagen of C. elegans. Nature 349(6311):707–709

    Article  PubMed  CAS  Google Scholar 

  • Hausman RE, Burnett AL (1971) The mesoglea of Hydra: IV. A quantitative radiographic study of the protein component. J Exp Zool 177:435–446

    Article  CAS  Google Scholar 

  • Haynes JF, Burnett AL, Davis LE (1968) Histological and ultrastructural study of the muscular and nervous systems in Hydra. I. The muscular system and the mesoglea. J Exp Zool 167:283–293

    Article  PubMed  CAS  Google Scholar 

  • Hess A (1957) Observations on the structure of Hydra as seen with the electron and light microscope. Quart J Micr Sci 98:315–326

    Google Scholar 

  • Holstein TW, Benoit M, Herder GV, David CN, Wanner G, Gaub HE (1994) Fibrous mini-collagens in Hydra nematocysts. Science 265:402–404

    Article  PubMed  CAS  Google Scholar 

  • Holstein TW, Hobmayer E, Technau U (2003) Cnidarians: an evolutionarily conservative model system for regeneration? Dev Dyn 226:257–267

    Article  PubMed  CAS  Google Scholar 

  • Hopker VH, Shewan D, Tessier-Lavigne M, Poo M, Holt C (1999) Growth-cone attraction to netrin-1 is converted to repulsion by laminin- 1. Nature 401(6748):69–73

    Article  PubMed  CAS  Google Scholar 

  • Hudson BG, Kalluri R, Gunwar S, Noelken ME (1994) Structure and organization of type IV collagen of renal glomerular basement membrane. Contrib Nephrol 107:163–167

    PubMed  CAS  Google Scholar 

  • Hutter H, Vogel BE, Plenefisch JD, Norris CR, Proenca RB, Spieth J, Guo C, Mastwal S, Zhu X, Scheel J, Hedgecock EM (2000) Conservation and novelty in the evolution of cell adhesion and extracellular matrix genes. Science 287(5455):989–994

    Article  PubMed  CAS  Google Scholar 

  • Iivanainen A, Sainio K, Sariola H, Tryggvason K (1995) Primary structure and expression of a novel human laminin alpha 4 chain. FEBS Lett 365(2–3):183–188

    Article  PubMed  CAS  Google Scholar 

  • Kallunki P, Sainio K, Eddy R, Byers M, Kallunki T, Sariola H, Beck K, Hirvonen H, Shows TB, Tryggvason K (1992) A truncated laminin chain homologous to the B2 chain: structure, spatial expression, and chromosomal assignment. J Cell Biol 119(3):679–693

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Turnbull J, Guimond S (2011) Extracellular matrix and cell signaling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol 209(2):139–151

    Article  PubMed  CAS  Google Scholar 

  • Kramer JM (1994) Structures and functions of collagens in Caenorhabditis elegans. FASEB J 8(3):329–336

    PubMed  CAS  Google Scholar 

  • Kruegel J, Miosge N (2010) Basement membrane components are key players in specialized extracellular matrices. Cell Mol Life Sci 67(17):992–1002

    Article  Google Scholar 

  • Kuehn K (1994) Basement membrane (type IV) collagen. Matrix Biol 14:439–445

    Article  Google Scholar 

  • Kurz EM, Holstein TW, Petri BM, Engel J, David CN (1991) Mini-collagens in hydra nematocytes. J Cell Biol 115:1159–1169

    Article  PubMed  CAS  Google Scholar 

  • Leontovich AA, Zhang J, Shimokawa K, Nagase H, Sarras MP Jr (2000) A novel hydra matrix metalloproteinase (HMMP) functions in extracellular matrix degradation, morphogenesis and the maintenance of differentiated cells in the foot process. Development 127:907–920

    PubMed  CAS  Google Scholar 

  • Martin PT, Ettinger AJ, Sanes JR (1995) A synaptic localization domain in the synaptic cleft protein laminin beta 2 (s-laminin) [see comments]. Science 269:413–416

    Article  PubMed  CAS  Google Scholar 

  • Matejas V, Hinkes B, Alkandari F, Al-Gazali L, Annexstad E, Aytac MB, Barrow M, Bláhová K, Bockenhauer D, Cheong HI, Maruniak-Chudek I, Cochat P, Dötsch J, Gajjar P, Hennekam RC, Janssen F, Kagan M, Kariminejad A, Kemper MJ, Koenig J, Kogan J, Kroes HY, Kuwertz-Bröking E, Lewanda AF, Medeira A, Muscheites J, Niaudet P, Pierson M, Saggar A, Seaver L, Suri M, Tsygin A, Wühl E, Zurowska A, Uebe S, Hildebrandt F, Antignac C, Zenker M (2010) Mutations in the human laminin beta2 (LAMB2) gene and the associated phenotypic spectrum. Hum Mutat 31(9):992–1002

    Article  PubMed  CAS  Google Scholar 

  • Miner JH, Lewis RM, Sanes J (1995) Molecular cloning of a novel laminin chain, alpha 5, and widespread expression in adult mouse tissues. J Biol Chem 270(48):28523–28526

    Article  PubMed  CAS  Google Scholar 

  • Münder S, Käsbauer T, Prexl A, Aufschnaiter R, Zhang X, Towb P, Böttger A (2010) Motch signalling defines critical boundary during budding in hydra. Dev Biol 344:331–345

    Article  PubMed  Google Scholar 

  • Noelken ME, Wisdom BJ Jr, Dean DC, Hung CH, Hudson BG (1986) Intestinal basement membrane of Ascaris suum. Molecular organization and properties of the collagen molecules. J Biol Chem 261:4706–4714

    PubMed  CAS  Google Scholar 

  • Olsen BR, Ninomiya Y (1999) Collagens. In: Kreis T, Vale R (eds) Guidebook to the extracellular matrix, anchor, and adhesion proteins. Oxford University Press, Oxford, pp 380–408

    Google Scholar 

  • Otto JJ, Campbell RD (1977) Budding in Hydra attenuata: bud stages and fate map. J Exp Zool 200:417–428

    Article  PubMed  CAS  Google Scholar 

  • Prockop DJ, Kivirikko KI (1995) Collagens: molecular biology, diseases, and potentials for therapy. Annu Rev Biochem 64:403–434

    Article  PubMed  CAS  Google Scholar 

  • Reinhart-King CA (2011) How matrix properties control the self-assembly and maintenance of tissues. Ann Biomed Eng 39:1849–1856

    Article  PubMed  Google Scholar 

  • Ricard-Blum S (2011) The collagen family. Cold Spring Harb Perspect Biol 3(1):a004978

    Article  PubMed  Google Scholar 

  • Richards AJ, Al Imara L, Carter NP, Lloyd JC, Leversha MA, Pope FM (1994) Localization of the gene (LAMA4) to chromosome 6q21 and isolation of a partial cDNA encoding a variant laminin A chain. Genomics 22:237–239

    Article  PubMed  CAS  Google Scholar 

  • Saleh AF, Aojula HS, Pluen A (2008) Enhancement of gene transfer using YIGSR analog of Tat-derived peptide. Biopolymers 89:62–71

    Article  PubMed  CAS  Google Scholar 

  • Sarras MP Jr, Madden ME, Zhang XM, Gunwar S, Huff JK, Hudson BG (1991a) Extracellular matrix (mesoglea) of Hydra vulgaris. I. Isolation and characterization. Dev Biol 148:481–494

    Article  PubMed  CAS  Google Scholar 

  • Sarras MP Jr, Meador D, Zhang XM (1991b) Extracellular matrix (mesoglea) of Hydra vulgaris. II. Influence of collagen and proteoglycan components on head regeneration. Dev Biol 148:495–500

    Article  PubMed  CAS  Google Scholar 

  • Sarras MP Jr, Zhang X, Huff JK, Accavitti MA, St John PL, Abrahamson DR (1993) Extracellular matrix (mesoglea) of Hydra vulgaris. III. Formation and function during morphogenesis of hydra cell aggregates. Dev Biol 157:383–398

    Article  PubMed  Google Scholar 

  • Sarras MP Jr, Yan L, Grens A, Zhang X, Agbas A, Huff JK, St John PL, Abrahamson DR (1994) Cloning and biological function of laminin in Hydra vulgaris. Dev Biol 164:312–324

    Article  PubMed  CAS  Google Scholar 

  • Schmid V, Ono SI, Muller SR (1999) Cell-substrate interactions in cnidaria. Microsc Res Tech 44:254–268

    Article  PubMed  CAS  Google Scholar 

  • Shimizu H, Zhang X, Zhang J, Leontovich A, Fei K, Yan L, Sarras MP Jr (2002) Epithelial morphogenesis in hydra requires de novo expression of extracellular matrix components and matrix metalloproteinases. Development 129:1521–1532

    PubMed  CAS  Google Scholar 

  • Shimizu H, Aufschnaiter R, Li L, Sarras MP Jr, Borza DB, Abrahamson DR, Sado Y, Zhang X (2008) The extracellular matrix of hydra is a porous sheet and contains type IV collagen. Zoology 111:410–418

    Article  PubMed  CAS  Google Scholar 

  • Shostak S, Globus M (1966) Migration of epithelio-muscular cells in Hydra. Nature 210:218–219

    Article  PubMed  CAS  Google Scholar 

  • Shostak S, Patel NG, Burnett AL (1965) The role of mesoglea in mass cell movement in Hydra. Dev Biol 12:434–450

    Article  PubMed  CAS  Google Scholar 

  • Stidwill RP, Christen M (1998) Alteration of fibronectin affinity during differentiation modulates the in vitro migration velocities of Hydra nematocytes. Cell Motil Cytoskeleton 41:68–73

    Article  PubMed  CAS  Google Scholar 

  • Talts JF, Andac Z, Gohring W, Brancaccio A, Timpl R (1999) Binding of the G domains of laminin alpha1 and alpha2 chains and perlecan to heparin, sulfatides, alpha-dystroglycan and several extracellular matrix proteins. EMBO J 18:863–870

    Article  PubMed  CAS  Google Scholar 

  • Timpl R, Brown JC (1996) Supramolecular assembly of basement membranes. Bioessays 18:123–132

    Article  PubMed  CAS  Google Scholar 

  • Vanacore R, Pedchenko V, Bhave G, Hudson BG (2011) Sulphilimine cross-links in Goodpasture’s disease. Clin Exp Immunol 164(Suppl 1):4–6

    Article  PubMed  CAS  Google Scholar 

  • Watt FM, Fujiwara H (2011) Cell-extracellular matrix interactions in normal and diseased skin. Cold Spring Harb Perspect Biol 3(4):a005124

    Article  PubMed  Google Scholar 

  • Wickstrom SA, Radovanac K, Fassler R (2011) Genetic analysis of integrins signaling. Cold Spring Harb Perspect Biol 3(2):a005116

    Article  PubMed  Google Scholar 

  • Wood RL (1961) The fine structure of intracellular and mesoglea attachments of epithelial cells in Hydra. In: Lenhoff HLW (ed) The biology of Hydra. Miami Press University, Coral Gables, FL

    Google Scholar 

  • Yan L, Pollock G, Nagase H, Sarras MP Jr (1995) Hydra metalloproteinase 1 (HMP1), a member of the astacin family, localizes to extracellular matrix in a head specific manner and has a functional role during development. Development 121:1591–1602

    PubMed  CAS  Google Scholar 

  • Yan L, Leontovich A, Fei K, Sarras MP Jr (2000) Hydra metalloproteinase 1 (HMP1) is a pre/pro enzyme which has a restricted mRNA spatial expression pattern during head regeneration in Hydra vulgaris. Dev Biol 219:115–128

    Article  PubMed  CAS  Google Scholar 

  • Yoshida N, Ishii E, Nomizu M, Yamada Y, Mohri S, Kinukawa N, Matsuzaki A, Oshima K, Hara T, Miyazaki S (1999) The laminin-derived peptide YIGSR (Tyr-Ile-Gly-Ser-Arg) inhibits human pre-B leukaemic cell growth and dissemination to organs in SCID mice. Br J Cancer 80:1898–1904

    Article  PubMed  CAS  Google Scholar 

  • Yurchenco PD (2011) Basement membranes: cell scaffoldings and signaling platforms. Cold Spring Harb Perspect Biol 3(2):a004911

    Article  PubMed  Google Scholar 

  • Yurchenco PD, Cheng YS (1994) Laminin self-assembly: a three-arm interaction hypothesis for the formation of a network in basement membranes. Contrib Nephrol 107:47–56

    PubMed  CAS  Google Scholar 

  • Yurchenco PD, O’Rear JJ (1994) Basal lamina assembly. Curr Opin Cell Biol 6:674–681

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Sarras MP Jr (1994) Cell-extracellular matrix interactions under in vivo conditions during interstitial cell migration in Hydra vulgaris. Development 120:425–432

    PubMed  CAS  Google Scholar 

  • Zhang X, Hudson BG, Sarras MP Jr (1994) Hydra cell aggregate development is blocked by selective fragments of fibronectin and type IV collagen. Dev Biol 164:10–23

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Fei K, Agbas A, Yan L, Zhang J, O’Reilly B, Deutzmann R, Sarras MP Jr (2002) Structure and function of an early divergent form of laminin in hydra: a structurally conserved ECM component that is essential for epithelial morphogenesis. Dev Genes Evol 212:159–172

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Boot-Handford RP, Huxley-Jones J, Forse LN, Mould AP, Robertson DL, Lili, Athiyal M, Sarras MP Jr (2007) The collagens of hydra provide insight into the evolution of metazoan extracellular matrices. J Biol Chem 282:6792–6802

    Article  PubMed  CAS  Google Scholar 

  • Ziegler U, Stidwill RP (1992) The attachment of nematocytes from the primitive invertebrate Hydra to fibronectin is specific and RGD-dependent. Exp Cell Res 202:281–286

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to express their appreciations to the National Institutes of Health, USA (DK092721), for funds that supported the preparation and writing of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, X., Sarras, M.P. (2013). ECM in Hydra Development and Regeneration. In: DeSimone, D., Mecham, R. (eds) Extracellular Matrix in Development. Biology of Extracellular Matrix. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35935-4_7

Download citation

Publish with us

Policies and ethics