Skip to main content

Interactive SVBRDF Modeling from a Single Image

  • Chapter
  • First Online:
Material Appearance Modeling: A Data-Coherent Approach
  • 663 Accesses

Abstract

In this chapter, an interactive system called AppGen is presented for modeling material appearance from a single example image. Given a texture image of a nearly planar surface lit with directional lighting, this system models the detailed spatially-varying reflectance properties and surface normal variations with minimal user interaction. Users are asked to provide simple shading and reflectance information via a few roughly marked strokes on the image, and the system uses this information together with some image analysis to assign reflectance properties and surface normals to each pixel. This system generates convincing results within minutes of interaction and works well for a variety of material types that exhibit different reflectance and normal variations, including natural and man-made surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grosse, R., Johnson, M.K., Adelson, E.H., Freeman, W.T.: Ground truth dataset and baseline evaluations for intrinsic image algorithms. In: IEEE 12th International Conference on Computer Vision 2009, pp. 2335–2342 (2009)

    Chapter  Google Scholar 

  2. Horn, B.K.P.: Robot Vision. MIT Electrical Engineering and Computer Science. MIT Press, Cambridge (1986)

    Google Scholar 

  3. Tappen, M.F., Adelson, E.H., Freeman, W.T.: Estimating intrinsic component images using non-linear regression. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2006

    Google Scholar 

  4. Shen, L., Tan, P., Lin, S.: Intrinsic image decomposition with non-local texture cues. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–7 (2008)

    Google Scholar 

  5. Bousseau, A., Paris, S., Durand, F.: User-assisted intrinsic images. ACM Trans. Graph. 28, 130 (2009)

    Article  Google Scholar 

  6. Xue, S., Wang, J., Tong, X., Dai, Q., Guo, B.: Image-based material weathering. Comput. Graph. Forum 27(2), 617–626 (2008)

    Article  Google Scholar 

  7. Horn, B.K.P., Brooks, M.J.: Shape from Shading. MIT Press, Cambridge (1989)

    Google Scholar 

  8. Zhang, R., Tsai, P.-S., Cryer, J.E., Shah, M.: Shape from shading: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 21, 690–706 (1999)

    Article  Google Scholar 

  9. Durou, J.D., Falcone, M., Sagona, M.: Numerical methods for shape-from-shading: a new survey with benchmarks. Comput. Vis. Image Underst. 109(1), 22–43 (2008)

    Article  Google Scholar 

  10. Glencross, M., Ward, G.J., Melendez, F., Jay, C., Liu, J., Hubbold, R.: A perceptually validated model for surface depth hallucination. ACM Trans. Graph. 27, 59 (2008)

    Article  Google Scholar 

  11. Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: The 27th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’00, pp. 417–424. ACM Press/Addison-Wesley, New York (2000)

    Chapter  Google Scholar 

  12. Kimmel, R., Elad, M., Shaked, D., Keshet, R., Sobel, I.: A variational framework for retinex. Int. J. Comput. Vis. 52, 7–23 (2003)

    Article  MATH  Google Scholar 

  13. Wu, T.-P., Sun, J., Tang, C.-K., Shum, H.-Y.: Interactive normal reconstruction from a single image. ACM Trans. Graph. 27(5), 1–9 (2008)

    Article  Google Scholar 

  14. Khan, E.A., Reinhard, E., Fleming, R.W., Bülthoff, H.H.: Image-based material editing. ACM Trans. Graph. 25, 654–663 (2006)

    Article  Google Scholar 

  15. Goldman, D.B., Curless, B., Hertzmann, A., Seitz, S.M.: Shape and spatially-varying brdfs from photometric stereo. IEEE Trans. Pattern Anal. Mach. Intell. 32(6), 1060–1071 (2010)

    Article  Google Scholar 

  16. Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 23rd ACM National Conference, ACM ’68, pp. 517–524. ACM, New York (1968)

    Chapter  Google Scholar 

  17. An, X., Pellacini, F.: AppProp: all-pairs appearance-space edit propagation. ACM Trans. Graph. 27(3), 40 (2008)

    Article  Google Scholar 

  18. Xu, K., Li, Y., Ju, T., Hu, S.-M., Liu, T.-Q.: Efficient affinity-based edit propagation using k-d tree. ACM Trans. Graph. 28(5), 118 (2009)

    Google Scholar 

  19. Fattal, R., Agrawala, M., Rusinkiewicz, S.: Multiscale shape and detail enhancement from multi-light image collections. In: ACM SIGGRAPH 2007 Papers, SIGGRAPH ’07. ACM, New York (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dong, Y., Lin, S., Guo, B. (2013). Interactive SVBRDF Modeling from a Single Image. In: Material Appearance Modeling: A Data-Coherent Approach. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35777-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35777-0_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35776-3

  • Online ISBN: 978-3-642-35777-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics