Skip to main content

Semi-device-independent QKD Based on BB84 and a CHSH-Type Estimation

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7582))

Abstract

Device-independent quantum key distribution (QKD) aims to certify the security of a cryptographic key generated between two parties based only on the violation of a Bell inequality. This strongest possible form of QKD requires the manipulation of entanglement, and is thus impossible to implement in a one-way (“prepare and measure”) scheme. Here, we introduce a semi-device-independent QKD scheme in the prepare-and-measure configuration where the only assumption is a bound on the dimension of the Hilbert space, and prove its security against collective attacks. Our scheme can be understood as a modification of the original BB84 protocol where an extra CHSH-type estimation is carried out by Bob on the qubits sent by Alice.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, vol. 11, pp. 175–179 (1984)

    Google Scholar 

  2. Ekert, A.K.: Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Mayers, D., Yao, A.: Self testing quantum apparatus. Quantum Info. Comput. 4, 273–286 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Barrett, J., Hardy, L., Kent, A.: No signaling and quantum key distribution. Phys. Rev. Lett. 95, 010503 (2005)

    Article  Google Scholar 

  5. Acín, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007)

    Article  Google Scholar 

  6. Pironio, S., Acín, A., Brunner, N., Gisin, N., Massar, S., Scarani, V.: Device-independent quantum key distribution secure against collective attacks. New Journal of Physics 11(4), 045021 (2009)

    Article  Google Scholar 

  7. Masanes, L., Pironio, S., Acín, A.: Secure device-independent quantum key distribution with causally independent measurement devices. Nature Communications 2, 283 (2011)

    Article  Google Scholar 

  8. Hanggi, E., Renner, R.: Device-independent quantum key distribution with commuting measurements (September 2010)

    Google Scholar 

  9. Pawłowski, M., Brunner, N.: Semi-device-independent security of one-way quantum key distribution. Phys. Rev. A 84, 010302 (2011)

    Google Scholar 

  10. Devetak, I., Winter, A.: Distillation of secret key and entanglement from quantum states. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science 461(2053), 207–235 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Konig, R., Renner, R., Schaffner, C.: The operational meaning of min- and max-entropy. IEEE Transactions on Information Theory 55(9), 4337–4347 (2009)

    Article  MathSciNet  Google Scholar 

  12. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)

    Google Scholar 

  13. Fuchs, C.A., Gisin, N., Griffiths, R.B., Niu, C.S., Peres, A.: Optimal eavesdropping in quantum cryptography. I. Information bound and optimal strategy. Phys. Rev. A 56(2), 1163–1172 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Woodhead, E., Lim, C.C.W., Pironio, S. (2013). Semi-device-independent QKD Based on BB84 and a CHSH-Type Estimation. In: Iwama, K., Kawano, Y., Murao, M. (eds) Theory of Quantum Computation, Communication, and Cryptography. TQC 2012. Lecture Notes in Computer Science, vol 7582. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35656-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35656-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35655-1

  • Online ISBN: 978-3-642-35656-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics