Skip to main content

An Efficient Generator for Clustered Dynamic Random Networks

  • Conference paper
Design and Analysis of Algorithms (MedAlg 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7659))

Included in the following conference series:

Abstract

A planted partition graph is an Erdős-Rényi type random graph, where, based on a given partition of the vertex set, vertices in the same part are linked with a higher probability than vertices in different parts. Graphs of this type are frequently used to evaluate graph clustering algorithms, i.e., algorithms that seek to partition the vertex set of a graph into densely connected clusters. We propose a self-evident modification of this model to generate sequences of random graphs that are obtained by atomic updates, i.e., the deletion or insertion of an edge or vertex. The random process follows a dynamically changing ground-truth clustering that can be used to evaluate dynamic graph clustering algorithms. We give a theoretical justification of our model and show how the corresponding random process can be implemented efficiently.

This work was partially supported by the DFG under grant WA 654/19-1 and WA 654/15-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fortunato, S.: Community detection in graphs. Physics Reports 486(3-5), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  2. Schaeffer, S.E.: Graph Clustering. Computer Science Review 1(1), 27–64 (2007)

    Article  MathSciNet  Google Scholar 

  3. Bollobás, B.: Random Graphs. Cambridge University Press (2001)

    Google Scholar 

  4. Gilbert, H.: Random Graphs. The Annals of Mathematical Statistics 30(4), 1141–1144 (1959)

    Article  MATH  Google Scholar 

  5. Condon, A., Karp, R.M.: Algorithms for Graph Partitioning on the Planted Partition Model. Randoms Structures and Algorithms 18(2), 116–140 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brandes, U., Gaertler, M., Wagner, D.: Experiments on Graph Clustering Algorithms. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 568–579. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Gaertler, M., Görke, R., Wagner, D.: Significance-Driven Graph Clustering. In: Kao, M.-Y., Li, X.-Y. (eds.) AAIM 2007. LNCS, vol. 4508, pp. 11–26. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proceedings of the National Academy of Science of the United States of America 99(12), 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Watts, D.J.: Small worlds: The dynamics of networks between order and randomness. Princeton University Press (1999)

    Google Scholar 

  10. Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

  11. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  12. Leskovec, J., Kleinberg, J.M., Faloutsos, C.: Graphs Over Time: Densification Laws, Shrinking Diameters and Possible Explanations. In: Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 177–187. ACM Press (2005)

    Google Scholar 

  13. Vázquez, A.: Growing network with local rules: Preferential attachment, clustering hierarchy, and degree correlations. Physical Review E 67, 056104 (2003)

    Google Scholar 

  14. Bagrow, J.: Evaluating local community methods in networks. Journal of Statistical Mechanics: Theory and Experiment, P05001 (2008), doi:10.1088/1742-5468/2008/05/P05001

    Google Scholar 

  15. Lancichinetti, A., Fortunato, S.: Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities. Physical Review E 80(1), 016118 (2009)

    Google Scholar 

  16. Fan, Y., Li, M., Zhang, P., Wu, J., Di, Z.: Accuracy and precision of methods for community identification in weighted networks. Physica A 377(1), 363–372 (2007)

    Article  Google Scholar 

  17. Guimerà, R., Sales-Pardo, M., Amaral, L.A.N.: Module identification in bipartite and directed networks. Physical Review E 76, 036102 (2007)

    Google Scholar 

  18. Zhou, H.: Network landscape from a Brownian particle’s perspective. Physical Review E 67, 041908 (2003)

    Google Scholar 

  19. Sawardecker, E.N., Sales-Pardo, M., Amaral, L.A.N.: Detection of node group membership in networks with group overlap. The European Physical Journal B 67, 277–284 (2009)

    Google Scholar 

  20. Aldecoa, R., Marín, I.: Closed benchmarks for network community structure characterization. Physical Review E 85, 026109 (2012)

    Google Scholar 

  21. Brandes, U., Mader, M.: A Quantitative Comparison of Stress-Minimization Approaches for Offline Dynamic Graph Drawing. In: van Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 99–110. Springer, Heidelberg (2011)

    Google Scholar 

  22. Robins, G., Pattison, P., Kalish, Y., Lusher, D.: An introduction to exponential random graph (p*) models for social networks. Social Networks 29(2), 173–191 (2007)

    Article  Google Scholar 

  23. Snijders, T.A.: The Statistical Evaluation of Social Network Dynamics. Sociological Methodology 31(1), 361–395 (2001)

    Article  Google Scholar 

  24. Clementi, A.E.F., Macci, C., Monti, A., Pasquale, F., Silvestri, R.: Flooding time in edge-Markovian dynamic graphs. SIAM Journal on Discrete Mathematics 24(4), 1694–1712 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Baumann, H., Crescenzi, P., Fraigniaud, P.: Parsimonious flooding in dynamic graphs. In: Proceedings of the 28th ACM Symposium on Principles of Distributed Computing, pp. 260–269. ACM Press (2009)

    Google Scholar 

  26. Görke, R., Staudt, C.: A Generator for Dynamic Clustered Random Graphs. Technical report, Informatik, Uni Karlsruhe, TR 2009-7 (2009)

    Google Scholar 

  27. Görke, R.: An Algorithmic Walk from Static to Dynamic Graph Clustering. PhD thesis, Fakultät für Informatik (February 2010)

    Google Scholar 

  28. Görke, R., Maillard, P., Staudt, C., Wagner, D.: Modularity-Driven Clustering of Dynamic Graphs. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 436–448. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  29. Görke, R., Kluge, R., Schumm, A., Staudt, C., Wagner, D.: An Efficient Generator for Clustered Dynamic Random Networks. Technical report, Karlsruhe Reports in Informatics 2012, 17 (2012)

    Google Scholar 

  30. Behrends, E.: Introduction to Markov Chains With Special Emphasis on Rapid Mixing. Friedrick Vieweg & Son (October 2002)

    Google Scholar 

  31. Batagelj, V., Brandes, U.: Efficient Generation of Large Random Networks. Physical Review E 036113 (2005)

    Google Scholar 

  32. Fisher, R.A., Yates, F.: Statistical Tables for Biological, Agricultural and Medical Research. Oliver and Boyd, London (1948)

    MATH  Google Scholar 

  33. Fan, C.T., Muller, M.E., Rezucha, I.: Development of Sampling Plans by Using Sequential (Item by Item) Selection Techniques and Digital-Computers. Journal of the American Statistical Association 57(298), 387–402 (1962)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Görke, R., Kluge, R., Schumm, A., Staudt, C., Wagner, D. (2012). An Efficient Generator for Clustered Dynamic Random Networks. In: Even, G., Rawitz, D. (eds) Design and Analysis of Algorithms. MedAlg 2012. Lecture Notes in Computer Science, vol 7659. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34862-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34862-4_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34861-7

  • Online ISBN: 978-3-642-34862-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics