Skip to main content

A Crowd Modeling Framework for Socially Plausible Animation Behaviors

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7660))

Abstract

This paper presents a framework for crowd modeling that produces socially plausible animation behaviors. Our high-level behavioral model is able to produce appropriate animated behavior that includes synchronized body-orientation and gesture of individual actors within the simulation. Because the model operationalizes a well-founded social-linguistic Common Ground (CG) theory of human interaction, the behavior chains form meaningful interactions among the actors. The model includes micro-behaviors relating to CG theory, and macro-behavior relating to the animation context. This allows reuse of the micro-behaviors as animation contexts change and flexible adaptation to different animation contexts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. van den Berg, J., Lin, M., Manocha, D.: Reciprocal velocity obstacles for real-time multi-agent navigation. In: IEEE Intl. Conf. on Robotics and Automation, ICRA 2008, pp. 1928–1935 (May 2008)

    Google Scholar 

  2. van den Berg, J., Guy, S.J., Snape, J., Lin, M.C., Manocha, D.: RVO2 library: Reciprocal collision avoidance for real-time multi-agent simulation (2011), http://gamma.cs.unc.edu/RVO2/

  3. Brogan, D.C., Johnson, N.L.: Realistic human walking paths. In: Proc. of the 16th Intl. Conf. on Computer Animation and Social Agents, CASA 2003, pp. 94–101. IEEE Computer Society (2003)

    Google Scholar 

  4. Cassell, J., Vilhjálmsson, H.H., Bickmore, T.: Beat: the behavior expression animation toolkit. In: Proc. of the 28th Annual Conf. on Computer Graphics and Interactive Techniques, SIGGRAPH 2001, pp. 477–486. ACM (2001)

    Google Scholar 

  5. Clark, H.H., Brennan, S.: Grounding in communication, pp. 127–149 (1991)

    Google Scholar 

  6. Coleman, J.S., James, J.: The equilibrium size distribution of freely-forming groups. Sociometry 24(1), 36–45 (1961)

    Article  Google Scholar 

  7. Endrass, B., André, E., Rehm, M., Lipi, A.A., Nakano, Y.: Culture-related differences in aspects of behavior for virtual characters across Germany and Japan. In: Proc. of the 10th Intl. Conf. on Autonomous Agents and Multiagent Systems, AAMAS 2011, vol. 2, pp. 441–448 (2011)

    Google Scholar 

  8. Fiorini, P., Shillert, Z.: Motion planning in dynamic environments using velocity obstacles. International Journal of Robotics Research 17, 760–772 (1998)

    Article  Google Scholar 

  9. Helbing, D., Moln, P., Farkas, I.J., Bolay, K.: Self-organizing pedestrian movement. Environment and Planning B: Planning and Design 28(3), 361–383 (2001)

    Article  Google Scholar 

  10. Hoogendoorn, M., Soumokil, J.: Evaluation of virtual agents utilizing theory of mind in a real time action game. In: Proc. of the 9th Intl. Conf. on Autonomous Agents and Multiagent Systems, AAMAS 2010, vol. 1, pp. 59–66 (2010)

    Google Scholar 

  11. Hughes, R.L.: A continuum theory for the flow of pedestrians. Transportation Research Part B: Methodological 36(6), 507–535 (2002)

    Article  Google Scholar 

  12. James, J.: The Distribution of Free-Forming Small Group Size. American Sociological Review 18(5), 569–570 (1953)

    Article  Google Scholar 

  13. Jan, D., Herrera, D., Martinovski, B., Novick, D., Traum, D.: A Computational Model of Culture-Specific Conversational Behavior. In: Pelachaud, C., Martin, J.-C., André, E., Chollet, G., Karpouzis, K., Pelé, D. (eds.) IVA 2007. LNCS (LNAI), vol. 4722, pp. 45–56. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Kapadia, M., Singh, S., Hewlett, W., Faloutsos, P.: Egocentric affordance fields in pedestrian steering. In: Proc. of the 2009 Symposium on Interactive 3D Graphics and Games, I3D 2009, pp. 215–223. ACM (2009)

    Google Scholar 

  15. Lau, M., Kuffner, J.J.: Behavior planning for character animation. In: Proc. of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 2005, pp. 271–280. ACM (2005)

    Google Scholar 

  16. Lemercier, S., Jelic, A., Kulpa, R., Hua, J., Fehrenbach, J., Degond, P., Appert-Rolland, C., Donikian, S., Pettré, J.: Realistic following behaviors for crowd simulation. Comp. Graph. Forum 31(2pt2), 489–498 (2012)

    Article  Google Scholar 

  17. Li, Y., Wang, T., Shum, H.Y.: Motion texture: a two-level statistical model for character motion synthesis. ACM Trans. Graph. 21(3), 465–472 (2002)

    Article  Google Scholar 

  18. Liu, C.K., Hertzmann, A., Popović, Z.: Composition of complex optimal multi-character motions. In: Proc. of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 2006, pp. 215–222 (2006)

    Google Scholar 

  19. Moussaïd, M., Perozo, N., Garnier, S., Helbing, D., Theraulaz, G.: The Walking Behaviour of Pedestrian Social Groups and Its Impact on Crowd Dynamics. PLoS ONE 5(4), e10047+ (2010)

    Google Scholar 

  20. Musse, S.R., Thalmann, D.: A Model of Human Crowd Behavior: Group Inter-Relationship and Collision Detection Analysis. In: Workshop Computer Animation and Simulation of Eurographics, pp. 39–52 (1997)

    Google Scholar 

  21. Narain, R., Golas, A., Curtis, S., Lin, M.C.: Aggregate dynamics for dense crowd simulation. ACM Trans. Graph. 28, 122:1–122:8 (2009)

    Google Scholar 

  22. Park, S.I., Quek, F., Cao, Y.: Modeling agent social joint actions via micro and macro coordination strategies. To Appear in: Proc. of 2012 IEEE/WIC/ACM Intl. Conf. on Web Intelligence and Intelligent Agent Technology, WI-IAT 2012 (2012)

    Google Scholar 

  23. Park, S.I., Quek, F., Cao, Y.: Modeling social groups in crowds using common ground theory. To appear in: Proc. of the 2012 Winter Simulation Conference, WSC 2012 (December 2012)

    Google Scholar 

  24. Pelachaud, C.: Multimodal expressive embodied conversational agents. In: Proc. of the 13th Annual ACM Intl. Conf. on Multimedia, MULTIMEDIA 2005, pp. 683–689 (2005)

    Google Scholar 

  25. Pelechano, N.: Crowd simulation incorporating agent psychological models, roles and communication. In: Proc. of the First Intl. Workshop on Crowd Simulation, pp. 21–30 (2005)

    Google Scholar 

  26. Peng, C., Park, S.I., Cao, Y., Tian, J.: A Real-Time System for Crowd Rendering: Parallel LOD and Texture-Preserving Approach on GPU. In: Allbeck, J.M., Faloutsos, P. (eds.) MIG 2011. LNCS, vol. 7060, pp. 27–38. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  27. Pettré, J., Laumond, J.P., Siméon, T.: A 2-stages locomotion planner for digital actors. In: Proc. of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 2003, pp. 258–264 (2003)

    Google Scholar 

  28. Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral model. SIGGRAPH Comput. Graph. 21, 25–34 (1987)

    Article  Google Scholar 

  29. Shao, W., Terzopoulos, D.: Autonomous pedestrians. Graphical Models 69(5-6), 246–274 (2007); special Issue on SCA 2005

    Google Scholar 

  30. Stone, M., DeCarlo, D., Oh, I., Rodriguez, C., Stere, A., Lees, A., Bregler, C.: Speaking with hands: creating animated conversational characters from recordings of human performance. ACM Trans. Graph. 23(3), 506–513 (2004)

    Article  Google Scholar 

  31. Thomas, G., Donikian, S.: Virtual humans animation in informed urban environments. In: Proc. of the Computer Animation, CA 2000, pp. 112–119. IEEE Computer Society (2000)

    Google Scholar 

  32. Tsai, J., Fridman, N., Bowring, E., Brown, M., Epstein, S., Kaminka, G., Marsella, S., Ogden, A., Rika, I., Sheel, A., Taylor, M.E., Wang, X., Zilka, A., Tambe, M.: Escapes: evacuation simulation with children, authorities, parents, emotions, and social comparison. In: Proc. of the 10th Intl. Conf. on Autonomous Agents and Multiagent Systems, AAMAS 2011, vol. 2, pp. 457–464 (2011)

    Google Scholar 

  33. Wampler, K., Andersen, E., Herbst, E., Lee, Y., Popović, Z.: Character animation in two-player adversarial games. ACM Trans. Graph. 29(3), 26:1–26:13 (2010)

    Google Scholar 

  34. Yu, Q., Terzopoulos, D.: A decision network framework for the behavioral animation of virtual humans. In: Proc. of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 2007, pp. 119–128 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Park, S.I., Peng, C., Quek, F., Cao, Y. (2012). A Crowd Modeling Framework for Socially Plausible Animation Behaviors. In: Kallmann, M., Bekris, K. (eds) Motion in Games. MIG 2012. Lecture Notes in Computer Science, vol 7660. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34710-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34710-8_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34709-2

  • Online ISBN: 978-3-642-34710-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics