Skip to main content

A Short Synthesis of Strychnine from Pyridine

  • Chapter
  • First Online:
Book cover Total Synthesis of Natural Products

Abstract

The synthesis of complex natural products serves as a source of great inspiration and challenge for organic chemists. The synthesis of strychnine is no exception. With six contiguous stereocenters, five of which adorn the central cyclohexane ring, a stereodefined trisubstituted olefin, and seven rings, strychnine (1, Fig. 4.1) presents a significant challenge for synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A synthesis of strychnine by the Stork group was apparently disclosed in lecture form, and some of the details are provided in the review by Bonjoch and Solé from 2000 [15a]. While we prefer not to cite a synthesis that is not available in the primary literature, based on the account provided in [15a], the Stork group utilized a vinyl carbanionic D-ring-closure by C15–C20 bond formation that presumably proceeded via conjugate addition onto an α,β-unsaturated ester.

  2. 2.

    Although bromide 87, could also be suitable, we spent most of our efforts on accessing iodide 88, which would presumably be more reactive in the final Heck cyclization.

  3. 3.

    Our efforts to concretely determine the relative stereochemistry of this dimer have been met by failure. We have made attempts to resolve several of the monomeric tetracyclic aminoaldehydes of type 100 by HPLC using chiral stationary phase, in order to know for sure the structure of the homodimer. The poor solubility of these compounds in typical HPLC solvents hampered these efforts to access enantiopure monomer. A few attempts at diastereomeric salt formation from compounds of type 101 using chiral carboxylic acids were also unsuccessful. Computational analysis corroborates the assumption that the homodimer should be formed preferentially.

  4. 4.

    (a) For a relevant discussion of the difficulty of C15–C20 bond construction, see [10i] and [65a]. (b) For a discussion of D-ring formation in related pyrroloindoline natural products, see [20d].

References

  1. Robinson R (1952) In: Cook JW (ed) Progress in organic chemistry. Butterworths, London, p 2

    Google Scholar 

  2. (a) Pelletier PJ, Caventou JB (1818) Ann Chim Phys 8:323; (b) Pelletier PJ, Caventou JB (1819) Ann Chim Phys 10:142

    Google Scholar 

  3. Regnault V (1838) Ann 26:17–35

    Google Scholar 

  4. (a) For a historical review of the chemistry of strychnine, see: Smith GF (1965) In: Manske RH (ed) The alkaloids, vol 8. Academic, New York, NY, pp 591–671; (b) For a lead ref that includes the synthesis of the Wieland–Gumlich aldehyde from strychnine, see: Anet FAL, Robinson R (1955) J Chem Soc:2253–2262; (c) For the original conversion of the Wieland–Gumlich aldehyde into strychnine, see: Anet FAL, Robinson R (1953) Chem Ind:245

    Google Scholar 

  5. (a) Briggs LH, Openshaw HT, Robinson R (1946) J Chem Soc:903–908; (b) Holmes HL, Openshaw HT, Robinson R (1946) J Chem Soc:910–912; (c) Woodward RB, Brehm WJ (1948) J Am Chem Soc 70:2107–2115

    Google Scholar 

  6. Woodward RB, Cava MP, Ollis WD, Hunger A, Daeniker HU, Schenker K (1963) Tetrahedron 19:247–288

    Article  CAS  Google Scholar 

  7. (a) Hofmann AW (1851) Ann 78:253–286; (b) Hofmann AW (1881) Ber 14:659–669; (c) Polonovski M, Polonovski M (1927) Bull Soc Chim Fr 41:1190–1208; (d) Polonovski M, Polonovski M (1930) Bull Soc Chim Belg 39:1–39; (e) von Braun J (1900) Ber 33:1438; (f) Emde H (1909) Ber Deutsch Chem Ges 42:2590

    Google Scholar 

  8. For our previous work with Zincke aldehydes, see: (a) Kearney AM, Vanderwal CD (2006) Angew Chem Int Ed 45:7803–7806; (b) Steinhardt SE, Silverston JS, Vanderwal CD (2008) J Am Chem Soc 130:7560–7561; (c) Michels TD, Rhee JU, Vanderwal CD (2008) Org Lett 10:4787–4790; (d) Steinhardt SE, Vanderwal CD (2009) J Am Chem Soc 131:7546–7547; (e) Michels TD, Kier MJ, Kearney AM, Vanderwal CD (2010) Org Lett 12:3093–3095; (f) Paton RS, Steinhardt SE, Vanderwal CD, Houk KN (2011) J Am Chem Soc 133:3895–3905; (g) Vanderwal CD. J Org Chem published online 30 August (2011) J Org Chem 76:9555–9567

    Google Scholar 

  9. For preliminary accounts of our research in this area, see: Martin DBC, Vanderwal CD (2009) J Am Chem Soc 131:3472–3473; (b) Martin DBC, Vanderwal CD (2011) Chem Sci 2:649–651; (c) Martin DBC, Nguyen LQ, Vanderwal CD (submitted for publication) (2012) J Org Chem 77:17–46

    Google Scholar 

  10. (a) Woodward RB, Cava MP, Ollis WD, Hunger A, Daeniker HU, Schenker K (1954) J Am Chem Soc 76:4749–4751; (b) Magnus P, Giles M, Bonnert R, Kim CS, McQuire L, Merritt A, Vicker N (1992) J Am Chem Soc 114:4403–4405; (c) Knight SD, Overman LE, Pairaudeau G (1993) J Am Chem Soc 115:9293–9294; (d) Kuehne ME, Xu F (1993) J Org Chem 58:7490–7497; (e) Rawal VH, Iwasa S (1994) J Org Chem 59:2685–2686; (f) Kuehne ME, Xu F (1998) J Org Chem 63:9427–9433; (g) Solé D, Bonjoch J, García-Rubio S, Peidró E, Bosch J (1999) Angew Chem Int Ed 38:395–397; (h) Ito M, Clark CW, Mortimore M, Goh JB, Martin SF (2001) J Am Chem Soc 123:8003–8010; (i) Eichberg MJ, Dorta RL, Lamottke K, Vollhardt KPC (2000) Org Lett 2:2479–2481; (j) Nakanishi M, Mori M (2002) Angew Chem Int Ed 41:1934–1936; (k) Bodwell GJ, Li J (2002) Angew Chem Int Ed 41:3261–3262; (l) Ohshima T, Xu Y, Takita R, Shimuzu S, Zhong D, Shibasaki M (2002) J Am Chem Soc 124:14546–14547; (m) Kaburagi Y, Tokuyama H, Fukuyama T (2004) J Am Chem Soc 126:10246–10247; (n) Zhang H, Boonsombat J, Padwa A (2007) Org Lett 9:279–282; (o) Sirasani G, Paul T, Dougherty W Jr, Kassel S, Andrade RB (2010) J Org Chem 75:3529–3532; (p) Beemelmanns C, Reissig H-U (2010) Angew Chem Int Ed 49: 8021–8025; (q) Ref. [9b]; (r) Jones SB, Simmons B, Mastracchio A, MacMillan DWC (2011) Nature 475:185–188

    Google Scholar 

  11. Woodward RB (1948) Nature 168:155–156

    Article  Google Scholar 

  12. Le Men J, Taylor WI (1965) Experientia 21:508–510

    Article  Google Scholar 

  13. For biogenetic studies of the Strychnos alkaloids, see: (a) Bisset NG (1980) In: Phillipson JD, Zenk MH (eds) Indole and biogenetically related alkaloids, Academic, London, pp 27–61; (b) Kisakürek MV, Leeuwenberg AJM, Hesse M (1983) In: Pelletier SW (ed) Alkaloids: chemical and biological perspectives, vol 1. Wiley, New York, NY, pp 211–376

    Google Scholar 

  14. (a) Dadson BA, Harley-Mason J, Foster GH (1968) J Chem Soc Chem Commun:1233; (b) Harley-Mason J (1975) Pure Appl Chem 34:167–174; (c) Ando M, Büchi G, Ohnuma T (1975) J Am Chem Soc 97:6880–6881; (d) Overman LE, Sworin M, Burk RM (1983) J Org Chem 48:2685–2690; (e) Kuehne ME, Podhorez DE, Mulamba T, Bornmann WG (1987) J Org Chem 52:347–353

    Google Scholar 

  15. For a review of strychnine syntheses prior to 2000, see: (a) Bonjoch J, Solé D (2000) Chem Rev 100:3455–3482; (b) For a more recent review, see: Mori M (2010) Heterocycles 81:259–292; (c) Cannon JS, Overman LE (2012) Angew Chem Int Ed 51:4288–4311

    Google Scholar 

  16. Prelog V, Battegay J, Taylor WI (1948) Helv Chim Acta 31:2244–2246

    Article  CAS  Google Scholar 

  17. Link JT (2002) Organic reactions, vol 60. Wiley, Hoboken, NJ, Chapter 2

    Google Scholar 

  18. For seminal work on the use of an intramolecular Heck reaction for the synthesis of Strychnos alkaloids, see: (a) Rawal VH, Michoud C (1991) Tetrahedron Lett 32:1695–1698; (b) Rawal VH, Michoud C, Monestel RF (1993) J Am Chem Soc 115: 3030–3031; (c) Ref. [10e]

    Google Scholar 

  19. (a) Geissoschizal: Birman VB, Rawal VH (1998) Tetrahedron Lett 39:7219–7222; (b) Minfiensine: Dounay AB, Humphreys PG, Overman LE, Wrobleski AD (2008) J Am Chem Soc 130:5368–5377; (c) Apparicine: Bennasar M-L, Zulaica E, Solé D, Alonso S (2009) Chem Commun:3372–3374; (d) Aspidophylline: Zu L, Boal BW, Garg NK (2011) J Am Chem Soc 133:8877–8879

    Google Scholar 

  20. For the related Pd-catalyzed enolate vinylation, see: (a) Solé D, Diaba F, Bonjoch J (2003) J Org Chem 68:5746–5749; (b) Boonsombat J, Zhang H, Chughtai MJ, Hartung J, Padwa A (2007) J Org Chem 73:3539–3550; (c) Ref. [19b]; (d) Zhang D, Song H, Qin Y (2011) Acc Chem Res 44:447–457

    Google Scholar 

  21. For a review of heterocycle synthesis using various Pd-catalyzed methods, see: Zeni G, Larock RC (2006) Chem Rev 106:4644–4680

    Google Scholar 

  22. Seminal papers: (a) Zincke T (1903) Liebigs Ann Chem 330:361–374; (b) Zincke T (1904) Liebigs Ann Chem 333:296–345; (c) Zincke T, Wurker W (1905) Liebigs Ann Chem 338:107–141; (d) König W (1904) J Prakt Chem 69:105–137

    Google Scholar 

  23. González-Béjar M, Stiriba S-E, Domingo LR, Pérez-Prieto J, Miranda MA (2006) J Org Chem 71:6932–6941

    Article  Google Scholar 

  24. (a) Haberl U, Steckhan E, Blechert S, Wiest O (1999) Chem Eur J 5:2859–2865; (b) Peglow T, Blechert S, Steckhanb E (1999) Chem Commun:433–434

    Google Scholar 

  25. (a) Bäckvall J-E, Plobeck NA, Juntunen SK (1989) Tetrahedron Lett 30:2589–2592; (b) Sato S, Fujino T, Isobe H, Nakamura E (2006) Bull Chem Soc Jpn 79:1288–1292

    Google Scholar 

  26. (a) Elliott GI, Fuchs JR, Blagg BSJ, Ishikawa H, Tao H, Yuan Z-Q, Boger DL (2006) J Am Chem Soc 128:10589–10595; (b) Ishikawa H, Elliott GI, Velcicky J, Choi Y, Boger DL (2006) J Am Chem Soc 128:10596–10612; (c) Sasaki Y, Kato D, Boger DL (2010) J Am Chem Soc 132:13533–13544

    Google Scholar 

  27. (a) Büchi G, Matsumoto K, Nishimura H (1971) J Am Chem Soc 93:3299–3301; (b) Ref. [14c]

    Google Scholar 

  28. For a Lewis-acid-mediated cyclization reaction of a tryptamine-derived vinylogous amide that affords the Aspidosperma skeleton, see: Huizenga RH, Pandit UK (1991) Tetrahedron 47:4155–4164

    Google Scholar 

  29. (a) Markó IE, Southern JM, Adams H (1992) Tetrahedron Lett 33:4657–4660; (b) Turet L, Markó IE, Tinant B, Declercq J-P, Touillaux R (2002) Tetrahedron Lett 43:6591–6595; (c) Heureux N, Wouters J, Markó IE (2005) Org Lett 7:5245–5248

    Google Scholar 

  30. Rosenmund P, Hosseini-Merescht M, Bub C (1994) Liebigs Ann Chem:151–158

    Google Scholar 

  31. Baldwin JE, Claridge TDW, Culshaw AJ, Heupel FA, Lee V, Spring DR, Whitehead RC (1999) Chem Eur J 5:3154–3161, and references therein

    Google Scholar 

  32. Kinsman AC, Kerr MA (2003) J Am Chem Soc 125:14120–14125

    Article  CAS  Google Scholar 

  33. Lin H, Danishefsky SJ (2003) Angew Chem Int Ed 42:36–51

    Article  CAS  Google Scholar 

  34. Nuhant P, Raikar SB, Wypych J-C, Delpech B, Mazarano C (2009) J Org Chem 74:9413–9421

    Article  CAS  Google Scholar 

  35. (a) Stauffacher D (1961) Helv Chim Acta 44:2006–2015; (b) Rakhimov DA, Malikov VM, Yusunov CY (1969) Khim Prir Soedin 5:461–462; (c) For NMR data, see: Clivio P, Richard B, Deverre J-R, Sevenet T, Zeches M, Le Men-Oliver L (1991) Phytochemistry 30:3785–3792

    Google Scholar 

  36. (a) Crawley GC, Harley-Mason J (1971) Chem Commun:685–686; (b) Bonjoch J, Solé D, García-Rubio S, Bosch J (1997) J Am Chem Soc 119:7230–7240; (c) He S (2001) Ph.D. Dissertation (Rawal), University of Chicago, Chicago, IL

    Google Scholar 

  37. (a) Overman reported a similar inability to effect N-formylation of dehydrotubifoline: Angle SR, Fevig JM, Knight SD, Marquis RW Jr, Overman LE (1993) J Am Chem Soc 115:3966–3976; (b) In contrast, C-functionalization could be effected in the related Aspidosperma series (32 % C vs. 22 % N); see Ref. [14d]

    Google Scholar 

  38. (a) For Z-1,2-dibromo-2-butene, see: Miyaura N, Ishikawa M, Suzuki A (1992) Tetrahedron Lett 33:2571–2574; (b) For Z-1-bromo-2-iodo-2-butene, see Ref. [18b]

    Google Scholar 

  39. Metz P, Linz C (1994) Tetrahedron 50:3951–3966

    Article  CAS  Google Scholar 

  40. Ilardi EA, Stivala CE, Zakarian A (2008) Org Lett 10:1727–1730

    Article  CAS  Google Scholar 

  41. Wuts PGM, Greene TW (2007) Greene’s protective groups in organic synthesis, 4th edn. Wiley, Hoboken, NJ, Chapter 7

    Google Scholar 

  42. Zlotos DP (2004) Eur J Org Chem:2375–2380; Zlotos DP, Buller S, Stiefl N, Baumann K, Mohr K (2004) J Med Chem 47:3561–3571

    Google Scholar 

  43. For a related preparation, see: Martin SF, Williamson SA, Gist RP, Smith KM (1983) J Org Chem 48:5170–5180

    Google Scholar 

  44. Garro-Helion F, Merzouk A, Guibé F (1993) J Org Chem 58:6109–6113

    Article  CAS  Google Scholar 

  45. Massiot G, Thépenier P, Jacquier M-J, Lounkokobi J, Mirand C, Zèches M, Le Men-Olivier L, Delaude C (1983) Tetrahedron 39:3645–3656

    Article  CAS  Google Scholar 

  46. Massiot G, Massousa B, Jacquier M-J, Thepenier P, Le Men-Olivier L, Delaude C, Verpoorte R (1988) Phytochemistry 27:3293–3304

    Article  CAS  Google Scholar 

  47. (a) Lim K-H, Low Y-Y, Kam T-S (2006) Tetrahedron Lett 47: 5037–5039; (b) Lim K-H, Hiraku O, Komiyama K, Koyano T, Hayashi M, Kam T-S (2007) J Nat Prod 70:1302–1307

    Google Scholar 

  48. In 2007, Padwa reported the first synthesis of valparicine using his Diels–Alder/fragmentation methodology. See: Boonsombat J, Zhang H, Chughtai MJ, Hartung J, Padwa A (2007) J Org Chem 73:3539–3550

    Google Scholar 

  49. Jeffery T (1996) Tetrahedron 52:10113–10130

    Article  CAS  Google Scholar 

  50. Solé D, Bonjoch J, García-Rubio S, Suriol R, Bosch J (1996) Tetrahedron Lett 37:5213–5216

    Article  Google Scholar 

  51. (a) Blumenkopf TA, Overman LE (1986) Chem Rev 86:857–873; (b) Overman LE, Bell K, Ito F (1984) J Am Chem Soc 106:4192–4201

    Google Scholar 

  52. Iminium catalysis: Lelais G, MacMillan DWC (2006) Aldrichimica Acta 39:79–87

    Google Scholar 

  53. Pham HV, Martin DBC, Vanderwal CD, Houk KN (2012) Chem Sci 3:1650–1655

    Article  CAS  Google Scholar 

  54. Shea KJ, Wise S, Burke LD, Davis PD, Gilman JW, Greeley AC (1982) J Am Chem Soc 104:5708, and references therein

    Google Scholar 

  55. Crimmins MT, Reinhold TL (1993) Org Reactions 44:297–588

    CAS  Google Scholar 

  56. (a) Salomon RG, Kochi JK (1972) J Am Chem Soc 94:1889–1897; (b) Salomon RG, Ghosh S, Raychaudhuri SR, Miranti TS (1984) Tetrahedron Lett 25:3167–3170

    Google Scholar 

  57. Wolff S, Barany F, Agosta WC (1980) J Am Chem Soc 102:2378–2386

    Article  CAS  Google Scholar 

  58. Knochel P, Betzemeier B (2002) In: Krause N (ed) Modern organocopper chemistry. Wiley-VCH, Weinheim, Chapter 2

    Google Scholar 

  59. For the elimination of R3 SnBr to give allenes, see: (a): Eichberg MJ, Dorta RL, Grotjahn DB, Lamottke K, Schmidt M, Vollhardt KPC (2001) J Am Chem Soc 123:9324–9337; (b) Overman LE, personal communication

    Google Scholar 

  60. (a) Maifield SV, Lee D (2005) Org Lett 7:4995–4998; (b) Trost BM, Ball ZT (2005) J Am Chem Soc 127:17644–17655

    Google Scholar 

  61. (a) Herron JR, Ball ZT (2008) J Am Chem Soc 130:16486–16487; (b) Herron JR, Russo V, Valente EJ, Ball ZT (2009) Chem Eur J 15:8713–8716; (c) Russo V, Herron JR, Ball ZT (2010) Org Lett 12:220–223

    Google Scholar 

  62. (a) Taguchi H, Ghoroku K, Tadaki M, Tsubouchi A, Takeda T (2002) J Org Chem 67:8450–8456; (b) Taguchi H, Ghoroku K, Tadaki M, Tsubouchi A, Takeda T (2001) Org Lett 3:3811–3814

    Google Scholar 

  63. Brook AG (1974) Acc Chem Res 7:77–84

    Google Scholar 

  64. (a) Smith AB III, Kim W-S, Tong R (2010) Org Lett 12:588–591; (b) Smith AB III, Tong R, Kim W-S, Maio WA (2011) Angew Chem Int Ed 50:8904–8907

    Google Scholar 

  65. Park PK, O’Malley SJ, Schmidt DR, Leighton JL (2006) J Am Chem Soc 128:2796–2797

    Article  Google Scholar 

Download references

Acknowledgment

We dedicate this account to the memory of David Gin, a wonderful person and truly inspiring scientist. We thank the NSF (CAREER Award CHE-0847061) for support of our work. This project also benefited from support through graduate fellowships to D.B.C.M. from Eli Lilly, the NSERC of Canada, and Bristol–Myers Squibb, as well as an Amgen Young Investigator Award, an AstraZeneca Award for Excellence in Chemistry, and an Eli Lilly Grantee Award to C.D.V. D.B.C.M is a recipient of a Roche Excellence in Chemistry Award, and C.D.V. is a fellow of the A.P. Sloan Foundation and is a University of California, Irvine Chancellor’s Faculty Fellow.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Martin, D.B.C., Vanderwal, C.D. (2012). A Short Synthesis of Strychnine from Pyridine. In: Li, J., Corey, E. (eds) Total Synthesis of Natural Products. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34065-9_4

Download citation

Publish with us

Policies and ethics